Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:202: 107050-107050 被引量:289
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
1秒前
英俊的铭应助victoria采纳,获得10
1秒前
JamesPei应助victoria采纳,获得10
1秒前
叶素绿完成签到,获得积分10
2秒前
3秒前
3秒前
我的小伙伴应助张i鹅采纳,获得10
3秒前
Frank应助韩雪霞采纳,获得10
4秒前
DcQiu科研小白完成签到,获得积分10
7秒前
大模型应助sujingbo采纳,获得10
8秒前
小王发布了新的文献求助10
8秒前
xxfsx应助Everglow采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
我崽了你发布了新的文献求助10
10秒前
10秒前
HYR完成签到 ,获得积分20
11秒前
桃花扇发布了新的文献求助10
12秒前
13秒前
念安发布了新的文献求助10
14秒前
15秒前
zml完成签到 ,获得积分10
16秒前
CodeCraft应助Fourteen采纳,获得10
16秒前
17秒前
17秒前
17秒前
浮游应助萱棚采纳,获得10
17秒前
18秒前
情怀应助光亮的纸飞机采纳,获得10
19秒前
科研通AI6应助hbhbj采纳,获得10
20秒前
victoria发布了新的文献求助10
21秒前
王羿发布了新的文献求助10
22秒前
william完成签到 ,获得积分10
23秒前
25秒前
25秒前
SC发布了新的文献求助200
27秒前
28秒前
29秒前
HH发布了新的文献求助30
30秒前
Fourteen发布了新的文献求助10
32秒前
sujingbo发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458037
求助须知:如何正确求助?哪些是违规求助? 4564228
关于积分的说明 14293977
捐赠科研通 4488967
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403