Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:202: 107050-107050 被引量:289
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenqiumu应助科研通管家采纳,获得20
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
chenqiumu应助科研通管家采纳,获得20
刚刚
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
通行证应助科研通管家采纳,获得10
1秒前
chenqiumu应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
玄风应助科研通管家采纳,获得10
1秒前
玄风应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
sunny完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得80
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
chenqiumu应助科研通管家采纳,获得20
1秒前
hs应助科研通管家采纳,获得30
1秒前
玄风应助科研通管家采纳,获得20
1秒前
无极微光应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
haaay发布了新的文献求助10
2秒前
2秒前
猪猪hero发布了新的文献求助30
3秒前
扶丽君完成签到,获得积分10
3秒前
Owen应助书桃采纳,获得30
4秒前
华北走地鸡完成签到,获得积分10
4秒前
科研通AI2S应助牛与马采纳,获得10
4秒前
yiannanan完成签到 ,获得积分10
4秒前
5秒前
5秒前
orixero应助Strider采纳,获得10
5秒前
5秒前
tdtk发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
江月年发布了新的文献求助10
6秒前
科研通AI6应助啊o采纳,获得10
6秒前
韦如发布了新的文献求助100
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675