Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:202: 107050-107050 被引量:289
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
siu完成签到 ,获得积分10
1秒前
1秒前
111完成签到,获得积分20
1秒前
yx完成签到 ,获得积分10
2秒前
polymershi发布了新的文献求助30
2秒前
AR完成签到,获得积分10
3秒前
科研通AI6应助llr采纳,获得30
3秒前
EscX完成签到,获得积分10
3秒前
金金发布了新的文献求助20
3秒前
华仔完成签到,获得积分10
3秒前
孙同学发布了新的文献求助10
3秒前
glycine发布了新的文献求助10
3秒前
善学以致用应助小欣采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
柯尔道南完成签到,获得积分10
5秒前
5秒前
kids发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
隐形曼青应助DDDD采纳,获得10
6秒前
zhuxi发布了新的文献求助10
6秒前
7秒前
加碘盐完成签到,获得积分10
7秒前
krkr完成签到,获得积分10
9秒前
姚琛完成签到 ,获得积分10
9秒前
nffl完成签到,获得积分10
9秒前
9秒前
Hyc28441711完成签到,获得积分10
9秒前
10秒前
JNL完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
科研通AI6应助NikolasZ采纳,获得10
10秒前
dyw发布了新的文献求助50
11秒前
YaRu应助守着她可好采纳,获得10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066