Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:202: 107050-107050 被引量:242
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yvette发布了新的文献求助10
刚刚
刚刚
zzy完成签到 ,获得积分10
1秒前
无奈曼云完成签到,获得积分10
1秒前
feng完成签到,获得积分10
1秒前
fyx发布了新的文献求助10
1秒前
YY完成签到,获得积分10
1秒前
默默的过客完成签到,获得积分10
1秒前
2秒前
情怀应助科研小狗采纳,获得10
2秒前
老实访波完成签到,获得积分10
2秒前
2秒前
浩歌完成签到,获得积分10
2秒前
果果超幼完成签到 ,获得积分10
2秒前
波里舞完成签到 ,获得积分10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
chivu1980发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
烟花应助莫里采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
小汪发布了新的文献求助10
4秒前
代博士完成签到 ,获得积分10
4秒前
5秒前
5秒前
xyj6486完成签到,获得积分10
5秒前
nanah完成签到,获得积分10
5秒前
坦率的匪完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245069
求助须知:如何正确求助?哪些是违规求助? 2888748
关于积分的说明 8255228
捐赠科研通 2557116
什么是DOI,文献DOI怎么找? 1385794
科研通“疑难数据库(出版商)”最低求助积分说明 650248
邀请新用户注册赠送积分活动 626447