Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:202: 107050-107050 被引量:258
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JaneChen发布了新的文献求助10
2秒前
2秒前
KKKKKKK发布了新的文献求助100
2秒前
2秒前
Dr_zsc完成签到,获得积分10
2秒前
2秒前
fossil完成签到,获得积分10
3秒前
5秒前
研友_Y59785应助积极的沂采纳,获得10
5秒前
balabala发布了新的文献求助10
6秒前
cqnuly发布了新的文献求助10
6秒前
6秒前
Dr_zsc发布了新的文献求助10
7秒前
7秒前
金米面发布了新的文献求助10
7秒前
pluto应助heiniu采纳,获得10
13秒前
13秒前
畅快慕蕊发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
李健的小迷弟应助kgf采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
领导范儿应助JaneChen采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
yiyi发布了新的文献求助30
18秒前
18秒前
善学以致用应助lqy采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
烟花应助陈cxz采纳,获得10
18秒前
hanye完成签到 ,获得积分10
19秒前
小蘑菇应助zxh采纳,获得10
19秒前
Adon完成签到,获得积分10
21秒前
畅快慕蕊完成签到,获得积分10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163