Multi-scale deep intra-class transfer learning for bearing fault diagnosis

概化理论 人工智能 计算机科学 学习迁移 方位(导航) 分类器(UML) 机器学习 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Xu Wang,Changqing Shen,Min Xia,Dong Wang,Jun Zhu,Zhongkui Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:202: 107050-107050 被引量:289
标识
DOI:10.1016/j.ress.2020.107050
摘要

The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA关闭了AAA文献求助
刚刚
热情嘉懿完成签到,获得积分20
刚刚
上官若男应助曹孟德采纳,获得10
刚刚
刚刚
1秒前
紫薯球完成签到,获得积分10
1秒前
jphu完成签到,获得积分10
1秒前
冷酷的鹏涛完成签到,获得积分10
1秒前
1秒前
科学界的泰斗完成签到,获得积分10
1秒前
小二郎应助teng采纳,获得10
1秒前
神勇的马里奥完成签到 ,获得积分10
2秒前
慕青应助aaaaaa采纳,获得10
2秒前
llw发布了新的文献求助10
2秒前
bkagyin应助abcdef采纳,获得10
2秒前
enterdawn完成签到,获得积分10
2秒前
李学东完成签到,获得积分10
2秒前
粉色完成签到,获得积分10
3秒前
草莓大恐龙完成签到,获得积分10
3秒前
ygmygqdss完成签到 ,获得积分10
3秒前
4秒前
Lz完成签到 ,获得积分10
5秒前
Miracle完成签到,获得积分10
5秒前
铯氰的蚁人完成签到,获得积分10
5秒前
5秒前
花未眠发布了新的文献求助10
5秒前
酷酷的涵蕾完成签到 ,获得积分10
6秒前
lin发布了新的文献求助10
6秒前
科目三应助slk采纳,获得10
6秒前
深情安青应助NiuHui采纳,获得10
6秒前
小屋完成签到,获得积分10
6秒前
wenhao完成签到,获得积分10
7秒前
7秒前
CipherSage应助你是我的唯一采纳,获得10
7秒前
HHH完成签到,获得积分10
7秒前
8秒前
8秒前
谦让谷菱完成签到,获得积分10
8秒前
Akim应助戴佳伟彩笔采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516775
求助须知:如何正确求助?哪些是违规求助? 4609657
关于积分的说明 14517657
捐赠科研通 4546551
什么是DOI,文献DOI怎么找? 2491236
邀请新用户注册赠送积分活动 1472956
关于科研通互助平台的介绍 1444911