National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series

遥感 3D城市模型 网格 环境科学 计算机科学 卫星图像 图像分辨率 空间分析 卫星 比例(比率) 系列(地层学) 合成孔径雷达 气象学 时间序列 地理 地图学 数据挖掘 地质学 人工智能 机器学习 大地测量学 工程类 航空航天工程 古生物学 可视化
作者
David Frantz,Franz Schug,Akpona Okujeni,Claudio Navacchi,Wolfgang Wagner,Sebastian van der Linden,Patrick Hostert
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:252: 112128-112128 被引量:166
标识
DOI:10.1016/j.rse.2020.112128
摘要

Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. However, openly accessible information at high spatial resolution is still missing at large for complete countries or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation statistics with morphological metrics. We trained machine learning regression models with highly accurate building height information from several 3D building models. The novelty of this method lies in the very fine resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, but the synergistic combination of both data sources leads to superior results. When testing the model against independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), which suggests that the prediction of the most frequently occurring buildings was robust. The average building height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applicability of this approach on the national scale. It mostly relies on freely available satellite imagery and open source software, which potentially permit frequent update cycles and cost-effective mapping that may be relevant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's resource usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
canvas完成签到,获得积分10
1秒前
麦兜兜兜麦完成签到,获得积分20
1秒前
贝贝完成签到,获得积分0
2秒前
2秒前
2秒前
Orochimaru发布了新的文献求助30
3秒前
思源应助想美事采纳,获得10
3秒前
4秒前
hujun完成签到 ,获得积分10
4秒前
了了完成签到,获得积分10
5秒前
5秒前
5秒前
yzz发布了新的文献求助20
6秒前
繁荣的醉山完成签到 ,获得积分10
6秒前
7秒前
huhahaK完成签到,获得积分10
7秒前
彭于晏应助勤劳的汉堡采纳,获得10
9秒前
叨叨不叨叨叨叨叨完成签到,获得积分10
10秒前
XX发布了新的文献求助10
10秒前
yyy完成签到 ,获得积分10
10秒前
星星火发布了新的文献求助10
11秒前
11秒前
DduYy完成签到,获得积分10
11秒前
hhh关注了科研通微信公众号
11秒前
huhahaK发布了新的文献求助10
12秒前
一岁一礼完成签到,获得积分10
12秒前
三胖完成签到,获得积分10
14秒前
英姑应助thinking采纳,获得10
14秒前
嘉的科研完成签到,获得积分10
14秒前
文献小白发布了新的文献求助10
15秒前
16秒前
Orange应助jane采纳,获得30
17秒前
动人的芾发布了新的文献求助10
17秒前
晚意完成签到,获得积分10
18秒前
19秒前
20秒前
落寞金鑫完成签到,获得积分10
21秒前
21秒前
小郭发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259688
求助须知:如何正确求助?哪些是违规求助? 4421251
关于积分的说明 13762275
捐赠科研通 4295121
什么是DOI,文献DOI怎么找? 2356733
邀请新用户注册赠送积分活动 1353120
关于科研通互助平台的介绍 1314279