已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series

遥感 3D城市模型 网格 环境科学 计算机科学 卫星图像 图像分辨率 空间分析 卫星 比例(比率) 系列(地层学) 合成孔径雷达 气象学 时间序列 地理 地图学 数据挖掘 地质学 人工智能 机器学习 大地测量学 工程类 航空航天工程 古生物学 可视化
作者
David Frantz,Franz Schug,Akpona Okujeni,Claudio Navacchi,Wolfgang Wagner,Sebastian van der Linden,Patrick Hostert
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:252: 112128-112128 被引量:166
标识
DOI:10.1016/j.rse.2020.112128
摘要

Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. However, openly accessible information at high spatial resolution is still missing at large for complete countries or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation statistics with morphological metrics. We trained machine learning regression models with highly accurate building height information from several 3D building models. The novelty of this method lies in the very fine resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, but the synergistic combination of both data sources leads to superior results. When testing the model against independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), which suggests that the prediction of the most frequently occurring buildings was robust. The average building height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applicability of this approach on the national scale. It mostly relies on freely available satellite imagery and open source software, which potentially permit frequent update cycles and cost-effective mapping that may be relevant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's resource usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kookkiki完成签到 ,获得积分10
5秒前
6秒前
Hello应助杨多多采纳,获得10
6秒前
7秒前
星弟完成签到 ,获得积分10
7秒前
missy发布了新的文献求助10
8秒前
9秒前
Word麻鸭发布了新的文献求助10
9秒前
cbx发布了新的文献求助30
10秒前
默默冬瓜应助xingxing采纳,获得20
15秒前
赘婿应助虚拟的怀绿采纳,获得10
16秒前
cbx完成签到,获得积分10
18秒前
18秒前
Persistence完成签到,获得积分10
19秒前
杨多多完成签到,获得积分10
20秒前
21秒前
21秒前
thirteen完成签到 ,获得积分10
23秒前
Persistence发布了新的文献求助10
24秒前
杨多多发布了新的文献求助10
26秒前
Word麻鸭完成签到,获得积分20
26秒前
kitty完成签到 ,获得积分10
27秒前
激动的猫咪完成签到,获得积分10
28秒前
wangxiaobin完成签到 ,获得积分10
32秒前
32秒前
38秒前
脑洞疼应助科研小透明采纳,获得30
41秒前
难过的人生完成签到 ,获得积分10
43秒前
吃了当归发布了新的文献求助10
47秒前
白日梦想家完成签到,获得积分10
49秒前
ysws完成签到,获得积分10
50秒前
一尔完成签到,获得积分20
56秒前
科研通AI2S应助吃了当归采纳,获得10
57秒前
whm完成签到,获得积分10
1分钟前
一尔发布了新的文献求助30
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得20
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268471
求助须知:如何正确求助?哪些是违规求助? 2908000
关于积分的说明 8344059
捐赠科研通 2578289
什么是DOI,文献DOI怎么找? 1401969
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634355