National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series

遥感 3D城市模型 网格 环境科学 计算机科学 卫星图像 图像分辨率 空间分析 卫星 比例(比率) 系列(地层学) 合成孔径雷达 气象学 时间序列 地理 地图学 数据挖掘 地质学 人工智能 机器学习 大地测量学 工程类 航空航天工程 古生物学 可视化
作者
David Frantz,Franz Schug,Akpona Okujeni,Claudio Navacchi,Wolfgang Wagner,Sebastian van der Linden,Patrick Hostert
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:252: 112128-112128 被引量:166
标识
DOI:10.1016/j.rse.2020.112128
摘要

Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. However, openly accessible information at high spatial resolution is still missing at large for complete countries or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation statistics with morphological metrics. We trained machine learning regression models with highly accurate building height information from several 3D building models. The novelty of this method lies in the very fine resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, but the synergistic combination of both data sources leads to superior results. When testing the model against independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), which suggests that the prediction of the most frequently occurring buildings was robust. The average building height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applicability of this approach on the national scale. It mostly relies on freely available satellite imagery and open source software, which potentially permit frequent update cycles and cost-effective mapping that may be relevant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's resource usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
1秒前
大头老婆发布了新的文献求助10
1秒前
松果完成签到,获得积分10
1秒前
思源应助啊啊啊啊采纳,获得10
1秒前
2秒前
英俊的铭应助孙湛舒采纳,获得10
2秒前
泰裤辣发布了新的文献求助10
2秒前
逍遥发布了新的文献求助10
2秒前
jjeuchi发布了新的文献求助10
3秒前
追风少侠李二狗完成签到,获得积分10
3秒前
后知后觉完成签到,获得积分10
3秒前
852应助yy采纳,获得10
3秒前
张正发布了新的文献求助10
4秒前
懵懂的惜筠完成签到,获得积分10
4秒前
4秒前
5秒前
时间丶发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
xiaodq完成签到,获得积分10
8秒前
8秒前
逍遥完成签到,获得积分10
9秒前
GUYIMI完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
jiwang发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
fy发布了新的文献求助10
10秒前
动听的雁枫完成签到,获得积分10
10秒前
Ava应助123采纳,获得10
10秒前
11秒前
Seek完成签到,获得积分10
11秒前
sxd完成签到,获得积分10
12秒前
wwr发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
lxl完成签到,获得积分10
13秒前
煎饼发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750242
求助须知:如何正确求助?哪些是违规求助? 5462911
关于积分的说明 15366043
捐赠科研通 4889381
什么是DOI,文献DOI怎么找? 2629120
邀请新用户注册赠送积分活动 1577422
关于科研通互助平台的介绍 1533977