National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series

遥感 3D城市模型 网格 环境科学 计算机科学 卫星图像 图像分辨率 空间分析 卫星 比例(比率) 系列(地层学) 合成孔径雷达 气象学 时间序列 地理 地图学 数据挖掘 地质学 人工智能 机器学习 大地测量学 工程类 航空航天工程 古生物学 可视化
作者
David Frantz,Franz Schug,Akpona Okujeni,Claudio Navacchi,Wolfgang Wagner,Sebastian van der Linden,Patrick Hostert
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:252: 112128-112128 被引量:166
标识
DOI:10.1016/j.rse.2020.112128
摘要

Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. However, openly accessible information at high spatial resolution is still missing at large for complete countries or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation statistics with morphological metrics. We trained machine learning regression models with highly accurate building height information from several 3D building models. The novelty of this method lies in the very fine resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, but the synergistic combination of both data sources leads to superior results. When testing the model against independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), which suggests that the prediction of the most frequently occurring buildings was robust. The average building height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applicability of this approach on the national scale. It mostly relies on freely available satellite imagery and open source software, which potentially permit frequent update cycles and cost-effective mapping that may be relevant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's resource usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助1816013153采纳,获得10
刚刚
雨_完成签到,获得积分10
刚刚
可可派完成签到,获得积分10
2秒前
0001完成签到,获得积分10
2秒前
汉堡包应助等待水绿采纳,获得10
2秒前
2秒前
3秒前
4秒前
徐立涛完成签到,获得积分10
4秒前
科研通AI2S应助TT采纳,获得10
4秒前
乐乐应助执着的导师采纳,获得10
4秒前
汉堡包应助小张同学采纳,获得10
4秒前
小牛发布了新的文献求助10
8秒前
那年那兔那些事完成签到 ,获得积分10
9秒前
科研通AI6应助pin采纳,获得30
10秒前
10秒前
阿橘完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
BowieHuang应助Rex采纳,获得10
11秒前
12秒前
赘婿应助小牛采纳,获得10
13秒前
DDD完成签到,获得积分10
13秒前
13秒前
虚心的如曼完成签到 ,获得积分10
13秒前
情怀应助黄小米采纳,获得30
14秒前
蚊子完成签到,获得积分10
14秒前
啊啊啊啊完成签到,获得积分10
15秒前
painting发布了新的文献求助10
15秒前
16秒前
16秒前
领导范儿应助葡萄小伊ovo采纳,获得10
16秒前
海盐气泡水完成签到,获得积分10
17秒前
晨晨完成签到,获得积分10
17秒前
20秒前
传奇3应助坚定的又莲采纳,获得10
20秒前
吧KO完成签到,获得积分10
20秒前
雪莉发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427