Dual-Path Deep Fusion Network for Face Image Hallucination.

面子(社会学概念) 对偶(语法数字) 深度学习 计算机视觉 模式识别(心理学) 卷积神经网络 图像(数学) 人工神经网络 特征提取
作者
Kui Jiang,Zhongyuan Wang,Peng Yi,Tao Lu,Junjun Jiang,Zixiang Xiong
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tnnls.2020.3027849
摘要

Along with the performance improvement of deep-learning-based face hallucination methods, various face priors (facial shape, facial landmark heatmaps, or parsing maps) have been used to describe holistic and partial facial features, making the cost of generating super-resolved face images expensive and laborious. To deal with this problem, we present a simple yet effective dual-path deep fusion network (DPDFN) for face image super-resolution (SR) without requiring additional face prior, which learns the global facial shape and local facial components through two individual branches. The proposed DPDFN is composed of three components: a global memory subnetwork (GMN), a local reinforcement subnetwork (LRN), and a fusion and reconstruction module (FRM). In particular, GMN characterize the holistic facial shape by employing recurrent dense residual learning to excavate wide-range context across spatial series. Meanwhile, LRN is committed to learning local facial components, which focuses on the patch-wise mapping relations between low-resolution (LR) and high-resolution (HR) space on local regions rather than the entire image. Furthermore, by aggregating the global and local facial information from the preceding dual-path subnetworks, FRM can generate the corresponding high-quality face image. Experimental results of face hallucination on public face data sets and face recognition on real-world data sets (VGGface and SCFace) show the superiority both on visual effect and objective indicators over the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上岸完成签到,获得积分10
刚刚
刚刚
情怀应助高薪采纳,获得10
刚刚
moyan发布了新的文献求助10
1秒前
黄飚完成签到,获得积分10
2秒前
赘婿应助lr123456采纳,获得10
3秒前
Owen应助咔咔采纳,获得10
3秒前
4秒前
yxy840325完成签到,获得积分10
5秒前
6秒前
田様应助wp4455777采纳,获得10
7秒前
WendyWen发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
hzhang0807发布了新的文献求助10
10秒前
脑洞疼应助Hh采纳,获得10
10秒前
10秒前
chen完成签到,获得积分10
10秒前
噗宝凹发布了新的文献求助10
11秒前
fengsewangjing完成签到,获得积分10
11秒前
kk完成签到,获得积分10
12秒前
666发布了新的文献求助10
13秒前
JY发布了新的文献求助30
13秒前
研友_8R5zBZ发布了新的文献求助10
15秒前
王正完成签到,获得积分10
15秒前
刘果发布了新的文献求助10
15秒前
hzhang0807完成签到,获得积分10
16秒前
quit发布了新的文献求助10
16秒前
俏皮绿蓉完成签到,获得积分10
16秒前
钱财实景发布了新的文献求助10
16秒前
17秒前
17秒前
大个应助科研通管家采纳,获得10
18秒前
从容芮应助科研通管家采纳,获得20
19秒前
Jonathan应助科研通管家采纳,获得10
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得30
19秒前
科目三应助科研通管家采纳,获得10
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129758
求助须知:如何正确求助?哪些是违规求助? 2780521
关于积分的说明 7748895
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294339
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570