清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women

机器学习 人工智能 决策树 医学 随机森林 支持向量机 接收机工作特性 逻辑回归 骨质疏松症 梯度升压 预测建模 内科学 计算机科学
作者
Jae‐Geum Shim,Dong Woo Kim,Kyoung-Ho Ryu,Eun-Ah Cho,Jin Hee Ahn,Jeong-In Kim,Sung Hyun Lee
出处
期刊:Archives of Osteoporosis [Springer Nature]
卷期号:15 (1) 被引量:66
标识
DOI:10.1007/s11657-020-00802-8
摘要

Many predictive tools have been reported for assessing osteoporosis risk. The development and validation of osteoporosis risk prediction models were supported by machine learning. Osteoporosis is a silent disease until it results in fragility fractures. However, early diagnosis of osteoporosis provides an opportunity to detect and prevent fractures. We aimed to develop machine learning approaches to achieve high predictive ability for osteoporosis risk that could help primary care providers identify which women are at increased risk of osteoporosis and should therefore undergo further testing with bone densitometry. We included all postmenopausal Korean women from the Korea National Health and Nutrition Examination Surveys (KNHANES V-1, V-2) conducted in 2010 and 2011. Machine learning models using methods such as the k-nearest neighbors (KNN), decision tree (DT), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural networks (ANN), and logistic regression (LR) were developed to predict osteoporosis risk. We analyzed the effect of applying the machine learning algorithms to the raw data and featuring the selected data only where the statistically significant variables were included as model inputs. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were used to evaluate performance among the seven models. A total of 1792 patients were included in this study, of which 613 had osteoporosis. The raw data consisted of 19 variables and achieved performances (in terms of AUROCs) of 0.712, 0.684, 0.727, 0.652, 0.724, 0.741, and 0.726 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. The feature selected data consisted of nine variables and achieved performances (in terms of AUROCs) of 0.713, 0.685, 0.734, 0.728, 0.728, 0.743, and 0.727 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. In this study, we developed and compared seven machine learning models to accurately predict osteoporosis risk. The ANN model performed best when compared to the other models, having the highest AUROC value. Applying the ANN model in the clinical environment could help primary care providers stratify osteoporosis patients and improve the prevention, detection, and early treatment of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lianna发布了新的文献求助10
2秒前
菠萝包完成签到 ,获得积分10
19秒前
零医驳回了xxfsx应助
24秒前
33秒前
李健应助科研通管家采纳,获得10
41秒前
46秒前
Pengy发布了新的文献求助10
51秒前
Ava应助Pengy采纳,获得10
58秒前
沙海沉戈完成签到,获得积分0
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
零医完成签到,获得积分10
3分钟前
啦啦完成签到,获得积分10
3分钟前
老石完成签到 ,获得积分10
3分钟前
Luna爱科研完成签到 ,获得积分10
3分钟前
Jasper应助啦啦采纳,获得10
4分钟前
4分钟前
Snieno发布了新的文献求助10
4分钟前
乔杰完成签到 ,获得积分10
4分钟前
Snieno完成签到,获得积分10
4分钟前
时老完成签到 ,获得积分10
4分钟前
房天川完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
雪山飞龙完成签到,获得积分10
5分钟前
V_I_G完成签到 ,获得积分10
5分钟前
毛毛发布了新的文献求助10
5分钟前
呆呆的猕猴桃完成签到 ,获得积分10
6分钟前
沉沉完成签到 ,获得积分0
6分钟前
6分钟前
7分钟前
Dmyb发布了新的文献求助10
7分钟前
无悔完成签到 ,获得积分10
7分钟前
Dmyb完成签到,获得积分10
7分钟前
冉亦完成签到,获得积分10
7分钟前
7分钟前
无极微光应助科研go采纳,获得20
7分钟前
面汤完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432630
求助须知:如何正确求助?哪些是违规求助? 4545081
关于积分的说明 14195257
捐赠科研通 4464576
什么是DOI,文献DOI怎么找? 2447184
邀请新用户注册赠送积分活动 1438524
关于科研通互助平台的介绍 1415387