亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women

机器学习 人工智能 决策树 医学 随机森林 支持向量机 接收机工作特性 逻辑回归 骨质疏松症 梯度升压 预测建模 内科学 计算机科学
作者
Jae‐Geum Shim,Dong Woo Kim,Kyoung-Ho Ryu,Eun-Ah Cho,Jin Hee Ahn,Jeong-In Kim,Sung Hyun Lee
出处
期刊:Archives of Osteoporosis [Springer Nature]
卷期号:15 (1) 被引量:49
标识
DOI:10.1007/s11657-020-00802-8
摘要

Many predictive tools have been reported for assessing osteoporosis risk. The development and validation of osteoporosis risk prediction models were supported by machine learning. Osteoporosis is a silent disease until it results in fragility fractures. However, early diagnosis of osteoporosis provides an opportunity to detect and prevent fractures. We aimed to develop machine learning approaches to achieve high predictive ability for osteoporosis risk that could help primary care providers identify which women are at increased risk of osteoporosis and should therefore undergo further testing with bone densitometry. We included all postmenopausal Korean women from the Korea National Health and Nutrition Examination Surveys (KNHANES V-1, V-2) conducted in 2010 and 2011. Machine learning models using methods such as the k-nearest neighbors (KNN), decision tree (DT), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural networks (ANN), and logistic regression (LR) were developed to predict osteoporosis risk. We analyzed the effect of applying the machine learning algorithms to the raw data and featuring the selected data only where the statistically significant variables were included as model inputs. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were used to evaluate performance among the seven models. A total of 1792 patients were included in this study, of which 613 had osteoporosis. The raw data consisted of 19 variables and achieved performances (in terms of AUROCs) of 0.712, 0.684, 0.727, 0.652, 0.724, 0.741, and 0.726 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. The feature selected data consisted of nine variables and achieved performances (in terms of AUROCs) of 0.713, 0.685, 0.734, 0.728, 0.728, 0.743, and 0.727 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. In this study, we developed and compared seven machine learning models to accurately predict osteoporosis risk. The ANN model performed best when compared to the other models, having the highest AUROC value. Applying the ANN model in the clinical environment could help primary care providers stratify osteoporosis patients and improve the prevention, detection, and early treatment of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小_n发布了新的文献求助10
7秒前
逗逗完成签到,获得积分10
23秒前
24秒前
26秒前
张张完成签到 ,获得积分10
28秒前
卡布发布了新的文献求助10
29秒前
yangon发布了新的文献求助10
29秒前
fly完成签到 ,获得积分10
33秒前
36秒前
Captain发布了新的文献求助10
38秒前
Ava应助jfuU采纳,获得10
45秒前
Ava应助jfuU采纳,获得10
45秒前
爱静静应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
充电宝应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
50秒前
50秒前
John完成签到,获得积分10
56秒前
yangon完成签到,获得积分10
56秒前
CipherSage应助uu采纳,获得10
1分钟前
yanhan2009发布了新的文献求助40
1分钟前
李爱国应助别急我先送采纳,获得10
1分钟前
zhong发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Nancy0818完成签到,获得积分10
1分钟前
李健的粉丝团团长应助xxy采纳,获得100
1分钟前
lonely完成签到,获得积分10
1分钟前
1分钟前
uu发布了新的文献求助10
1分钟前
lkk183完成签到 ,获得积分10
1分钟前
杉进完成签到 ,获得积分10
1分钟前
lonely发布了新的文献求助10
1分钟前
abc完成签到 ,获得积分10
1分钟前
Jerry发布了新的文献求助20
1分钟前
uu完成签到,获得积分10
1分钟前
佘炭炭完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126059
求助须知:如何正确求助?哪些是违规求助? 2776259
关于积分的说明 7729655
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292201
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392