亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women

机器学习 人工智能 决策树 医学 随机森林 支持向量机 接收机工作特性 逻辑回归 骨质疏松症 梯度升压 预测建模 内科学 计算机科学
作者
Jae‐Geum Shim,Dong Woo Kim,Kyoung-Ho Ryu,Eun-Ah Cho,Jin Hee Ahn,Jeong-In Kim,Sung Hyun Lee
出处
期刊:Archives of Osteoporosis [Springer Science+Business Media]
卷期号:15 (1) 被引量:66
标识
DOI:10.1007/s11657-020-00802-8
摘要

Many predictive tools have been reported for assessing osteoporosis risk. The development and validation of osteoporosis risk prediction models were supported by machine learning. Osteoporosis is a silent disease until it results in fragility fractures. However, early diagnosis of osteoporosis provides an opportunity to detect and prevent fractures. We aimed to develop machine learning approaches to achieve high predictive ability for osteoporosis risk that could help primary care providers identify which women are at increased risk of osteoporosis and should therefore undergo further testing with bone densitometry. We included all postmenopausal Korean women from the Korea National Health and Nutrition Examination Surveys (KNHANES V-1, V-2) conducted in 2010 and 2011. Machine learning models using methods such as the k-nearest neighbors (KNN), decision tree (DT), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural networks (ANN), and logistic regression (LR) were developed to predict osteoporosis risk. We analyzed the effect of applying the machine learning algorithms to the raw data and featuring the selected data only where the statistically significant variables were included as model inputs. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were used to evaluate performance among the seven models. A total of 1792 patients were included in this study, of which 613 had osteoporosis. The raw data consisted of 19 variables and achieved performances (in terms of AUROCs) of 0.712, 0.684, 0.727, 0.652, 0.724, 0.741, and 0.726 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. The feature selected data consisted of nine variables and achieved performances (in terms of AUROCs) of 0.713, 0.685, 0.734, 0.728, 0.728, 0.743, and 0.727 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. In this study, we developed and compared seven machine learning models to accurately predict osteoporosis risk. The ANN model performed best when compared to the other models, having the highest AUROC value. Applying the ANN model in the clinical environment could help primary care providers stratify osteoporosis patients and improve the prevention, detection, and early treatment of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lingzhiyi发布了新的文献求助10
1秒前
lingzhiyi完成签到,获得积分10
10秒前
无花果应助raki采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
43秒前
1分钟前
daomaihu完成签到,获得积分10
1分钟前
1分钟前
persi完成签到 ,获得积分10
1分钟前
zydaphne完成签到 ,获得积分10
1分钟前
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
1分钟前
yue发布了新的文献求助10
1分钟前
actor2006完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
peter发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助peter采纳,获得10
2分钟前
在水一方应助yue采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
咸鱼完成签到 ,获得积分10
2分钟前
yue完成签到,获得积分10
2分钟前
万能图书馆应助咸鱼采纳,获得10
3分钟前
呜呼完成签到,获得积分10
3分钟前
桐桐应助加湿器采纳,获得10
3分钟前
3分钟前
夏佳泽发布了新的文献求助10
3分钟前
天雨流芳完成签到 ,获得积分10
3分钟前
Jasper应助夏佳泽采纳,获得10
3分钟前
kytm完成签到,获得积分10
4分钟前
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
可靠的一手完成签到 ,获得积分10
5分钟前
whoknowsname发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323925
求助须知:如何正确求助?哪些是违规求助? 4465024
关于积分的说明 13893967
捐赠科研通 4356721
什么是DOI,文献DOI怎么找? 2392995
邀请新用户注册赠送积分活动 1386535
关于科研通互助平台的介绍 1356693