Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women

机器学习 人工智能 决策树 医学 随机森林 支持向量机 接收机工作特性 逻辑回归 骨质疏松症 梯度升压 预测建模 内科学 计算机科学
作者
Jae‐Geum Shim,Dong Woo Kim,Kyoung-Ho Ryu,Eun-Ah Cho,Jin Hee Ahn,Jeong-In Kim,Sung Hyun Lee
出处
期刊:Archives of Osteoporosis [Springer Science+Business Media]
卷期号:15 (1) 被引量:66
标识
DOI:10.1007/s11657-020-00802-8
摘要

Many predictive tools have been reported for assessing osteoporosis risk. The development and validation of osteoporosis risk prediction models were supported by machine learning. Osteoporosis is a silent disease until it results in fragility fractures. However, early diagnosis of osteoporosis provides an opportunity to detect and prevent fractures. We aimed to develop machine learning approaches to achieve high predictive ability for osteoporosis risk that could help primary care providers identify which women are at increased risk of osteoporosis and should therefore undergo further testing with bone densitometry. We included all postmenopausal Korean women from the Korea National Health and Nutrition Examination Surveys (KNHANES V-1, V-2) conducted in 2010 and 2011. Machine learning models using methods such as the k-nearest neighbors (KNN), decision tree (DT), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural networks (ANN), and logistic regression (LR) were developed to predict osteoporosis risk. We analyzed the effect of applying the machine learning algorithms to the raw data and featuring the selected data only where the statistically significant variables were included as model inputs. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were used to evaluate performance among the seven models. A total of 1792 patients were included in this study, of which 613 had osteoporosis. The raw data consisted of 19 variables and achieved performances (in terms of AUROCs) of 0.712, 0.684, 0.727, 0.652, 0.724, 0.741, and 0.726 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. The feature selected data consisted of nine variables and achieved performances (in terms of AUROCs) of 0.713, 0.685, 0.734, 0.728, 0.728, 0.743, and 0.727 for KNN, DT, RF, GBM, SVM, ANN, and LR with fivefold cross-validation, respectively. In this study, we developed and compared seven machine learning models to accurately predict osteoporosis risk. The ANN model performed best when compared to the other models, having the highest AUROC value. Applying the ANN model in the clinical environment could help primary care providers stratify osteoporosis patients and improve the prevention, detection, and early treatment of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
1秒前
优秀的芯完成签到,获得积分10
1秒前
1秒前
隐形曼青应助小透明采纳,获得10
2秒前
小姜发布了新的文献求助10
2秒前
yuan发布了新的文献求助10
2秒前
cenzy完成签到,获得积分10
2秒前
Ava应助1212采纳,获得10
2秒前
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
Fanfan完成签到 ,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
宓天问发布了新的文献求助10
3秒前
蔷薇之花发布了新的文献求助10
3秒前
Bizibili完成签到,获得积分10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
领导范儿应助啊啊啊啊采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
TiO2完成签到 ,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
CyrusSo524应助科研通管家采纳,获得10
5秒前
young应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
5秒前
研友_Y59785应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060