克里金
变异函数
高斯过程
插值(计算机图形学)
叶理(地质学)
变质岩
领域(数学)
地质学
高斯分布
计算机科学
贝叶斯概率
算法
人工智能
数学
机器学习
岩石学
物理
运动(物理)
量子力学
纯数学
作者
Ítalo Gomes Gonçalves,Felipe Guadagnin,Sissa Kumaira,Saulo Lopes Da Silva
标识
DOI:10.1016/j.cageo.2021.104715
摘要
This work presents a Gaussian process model (a Bayesian derivation of kriging) for the interpolation of structural field data (dip and strike measurements). The structural data are treated as the directional derivatives of a latent potential field. The latent field’s isosurfaces characterize the general structural trend in a region, and the predictive variance can be used as a measure of uncertainty. The model’s parameters are optimized via maximum likelihood, avoiding the need for a variogram analysis. The model is tested using the orientation vectors of metamorphic foliation in meta-volcanic rocks of the Passo Feio Metamorphic Complex, in southern Brazil. An open-source implementation is available.
科研通智能强力驱动
Strongly Powered by AbleSci AI