亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-scale augmented Granger causality (lsAGC) for connectivity analysis in complex systems: from computer simulations to functional MRI (fMRI)

计算机科学 静息状态功能磁共振成像 功能连接 人工智能 功能磁共振成像
作者
Axel Wismüller,M. Ali Vosoughi
标识
DOI:10.1117/12.2582152
摘要

We introduce large-scale Augmented Granger Causality (lsAGC) as a method for connectivity analysis in complex systems. The lsAGC algorithm combines dimension reduction with source time-series augmentation and uses predictive time-series modeling for estimating directed causal relationships among time-series. This method is a multivariate approach, since it is capable of identifying the influence of each time-series on any other time-series in the presence of all other time-series of the underlying dynamic system. We quantitatively evaluate the performance of lsAGC on synthetic directional time-series networks with known ground truth. As a reference method, we compare our results with cross-correlation, which is typically used as a standard measure of connectivity in the functional MRI (fMRI) literature. Using extensive simulations for a wide range of time-series lengths and two different signal-to-noise ratios of 5 and 15 dB, lsAGC consistently outperforms cross-correlation at accurately detecting network connections, using Receiver Operator Characteristic Curve (ROC) analysis, across all tested time-series lengths and noise levels. In addition, as an outlook to possible clinical application, we perform a preliminary qualitative analysis of connectivity matrices for fMRI data of Autism Spectrum Disorder (ASD) patients and typical controls, using a subset of 59 subjects of the Autism Brain Imaging Data Exchange II (ABIDE II) data repository. Our results suggest that lsAGC, by extracting sparse connectivity matrices, may be useful for network analysis in complex systems, and may be applicable to clinical fMRI analysis in future research, such as targeting disease-related classification or regression tasks on clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kapur发布了新的文献求助100
25秒前
40秒前
43秒前
48秒前
58秒前
Kapur完成签到,获得积分10
58秒前
1分钟前
科目三应助涂烁采纳,获得30
1分钟前
1分钟前
pp完成签到,获得积分10
1分钟前
1分钟前
科目三应助ZXX采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ZXX发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小蘑菇应助pp采纳,获得10
2分钟前
Ava应助ZXX采纳,获得10
2分钟前
pp给pp的求助进行了留言
2分钟前
ClarkClarkson完成签到,获得积分10
2分钟前
3分钟前
小手姑娘发布了新的文献求助10
3分钟前
3分钟前
ZXX发布了新的文献求助10
3分钟前
3分钟前
3分钟前
涂烁发布了新的文献求助30
4分钟前
大胆初翠完成签到,获得积分20
4分钟前
小手姑娘完成签到,获得积分10
4分钟前
涂烁完成签到,获得积分10
4分钟前
爆米花应助kkkayle采纳,获得10
4分钟前
4分钟前
kkkayle发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505215
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867