Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries

材料科学 插层(化学) 阴极 电化学 锂(药物) 化学工程 兴奋剂 储能 氧化物 电极 纳米技术 无机化学 光电子学 化学 冶金 物理 工程类 内分泌学 医学 物理化学 功率(物理) 量子力学
作者
Sidra Jamil,Ammar Bin Yousaf,Sun Hee Yoon,Dong Suk Han,Li Yang,Peter Kasák,Xianyou Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:416: 129118-129118 被引量:54
标识
DOI:10.1016/j.cej.2021.129118
摘要

Lithium-ion batteries (LIBs) with high energy density, safety with longer service life, cost-effectiveness, and superior cycling stability is a demand to achieve the driving range of 300 miles per charge in electric vehicles (EVs). High Ni-low Co cathodes are among the high potential cathodes for next-generation lithium-ion batteries. Despite its numerous advantages, it still hinders from poor cycling stability and structural degradation, mainly affecting its commercialization. Herein, a facile high-temperature solid-state method is employed to synthesize dual cation doped NCM (LiNi0.94Co0.03Mn0.03O2) by concurrent substitution of Zirconium and Gallium. It has been found that Ga doping can promote cation order, strengthen the TM-O bond energy, diminish oxygen loss, thus stabilize the reversible anionic redox processes. Meanwhile, the strong Zr-O bond intensifies TM-O slabs, facilitating Li+ intercalation/de-intercalation. As a result, Zr-Ga dual-doped (NCMZG) develops a heteroepitaxial interface, which significantly reduces cation mixing, suppresses layered to spinel/rock-salt phase transition and alleviates cyclability as well as voltage decay. Hence, NCMZG exhibits outstanding capacity retention of 91.9% at 0.5C after 100 cycles, while NCM can only maintain 72.64% of initial discharge capacity. Additionally, NCMZG possesses superior rate capability even at an ultrahigh C-rate of 10C as compared to NCM. Hence, the dual-doping phenomenon is beneficial to enhance the electrochemical performance of high Ni-low Co layered oxide cathodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助sophieCCM0302采纳,获得10
2秒前
浪子应助OPV采纳,获得10
2秒前
仙布着急发布了新的文献求助10
2秒前
lpylll发布了新的文献求助10
2秒前
鹤轸发布了新的文献求助10
3秒前
3秒前
3秒前
007完成签到 ,获得积分10
3秒前
4秒前
5秒前
OK发布了新的文献求助20
5秒前
月球上的人完成签到,获得积分10
5秒前
6秒前
阿依咕噜完成签到,获得积分10
7秒前
善学以致用应助奥氏采纳,获得10
8秒前
圆圆的大脑完成签到,获得积分10
8秒前
科目三应助小tan采纳,获得10
8秒前
8秒前
慕青应助123131采纳,获得10
8秒前
科研通AI6.1应助呆萌宝莹采纳,获得10
9秒前
9秒前
风清扬发布了新的文献求助10
9秒前
9秒前
四夕水窖完成签到,获得积分10
9秒前
kei发布了新的文献求助10
10秒前
10秒前
11秒前
仁爱曼荷发布了新的文献求助10
12秒前
13秒前
13秒前
ZZ发布了新的文献求助20
14秒前
14秒前
14秒前
cc66发布了新的文献求助10
14秒前
宋JINGLEI完成签到,获得积分10
15秒前
15秒前
CodeCraft应助luckily采纳,获得10
15秒前
羊屎蛋完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735261
求助须知:如何正确求助?哪些是违规求助? 5359491
关于积分的说明 15329099
捐赠科研通 4879515
什么是DOI,文献DOI怎么找? 2622039
邀请新用户注册赠送积分活动 1571201
关于科研通互助平台的介绍 1528011