Fuzzy-tuned model predictive control for dynamic eco-driving on hilly roads

模型预测控制 燃料效率 计算机科学 能源消耗 模糊逻辑 寄主(生物学) 控制理论(社会学) 车辆动力学 汽车工程 数学优化 控制(管理) 数学 工程类 人工智能 电气工程 生物 生态学
作者
A. S. M. Bakibillah,Md Abdus Samad Kamal,Chee Pin Tan,Tomohisa Hayakawa,Jun‐ichi Imura
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:99: 106875-106875 被引量:15
标识
DOI:10.1016/j.asoc.2020.106875
摘要

Existing optimal control systems for vehicles that consider the effect of road slopes use a cost function with fixed weights related to speed deviation, regardless of driving states on slopes. As a result, gravitational potential energy is not efficiently exploited and braking at down-slopes (which wastes energy) becomes unavoidable. Thus, there is still significant scope to improve fuel saving behavior on slopes. To address this opportunity, in this paper, we present a dynamic eco-driving system (EDS) for a (host) vehicle based on model predictive control (MPC) with fuzzy-tuned weights, which helps efficiently utilize the gravitational potential energy. In the proposed EDS, we formulate a nonlinear optimization problem with an appropriate prediction horizon and an objective function based on the factors affecting vehicle fuel consumption. The objective function’s weight is tuned via fuzzy inference techniques using information of the vehicle’s instantaneous velocity and the road slope angle. By considering the vehicle longitudinal dynamics, preceding vehicle’s state, and road slope information (obtained from the digital road map), the optimization generates velocity trajectories for the host vehicle that minimizes fuel consumption and CO2 emission. We also investigate the traffic flow performance of following vehicles (behind the host vehicle) in dense traffic; this was not considered in existing works on hilly roads. The effectiveness of the proposed EDS is evaluated using microscopic traffic simulations on a real road stretch in Fukuoka City, Japan, and the results demonstrate that the fuzzy-tuned MPC EDS significantly reduces fuel consumption and CO2 emission of the host vehicle compared to the traditional driving (human-based) system (TDS) for the same travel time. In dense traffic, the fuel consumption and CO2 emission of following vehicles are noticeably reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
困大颗粒发布了新的文献求助10
2秒前
斯文败类应助苹果一德采纳,获得10
2秒前
记忆超群完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助6z1aaaaa采纳,获得10
9秒前
yumeng完成签到,获得积分10
9秒前
CipherSage应助激动的越彬采纳,获得10
9秒前
10秒前
11秒前
科研垃圾发布了新的文献求助20
11秒前
12秒前
yumeng发布了新的文献求助10
14秒前
此卷12138发布了新的文献求助30
17秒前
我有柳叶刀完成签到,获得积分10
18秒前
李健应助qiu采纳,获得10
19秒前
科研通AI5应助困大颗粒采纳,获得10
19秒前
万能图书馆应助困大颗粒采纳,获得10
19秒前
JamesPei应助困大颗粒采纳,获得10
19秒前
20秒前
大个应助ywj采纳,获得30
21秒前
22秒前
hyx发布了新的文献求助10
23秒前
科研通AI5应助优秀白竹采纳,获得10
23秒前
嗯嗯完成签到 ,获得积分10
23秒前
吴冕之完成签到,获得积分10
25秒前
25秒前
此卷12138完成签到,获得积分10
26秒前
27秒前
30秒前
30秒前
31秒前
打打应助科研垃圾采纳,获得10
31秒前
科目三应助阿白采纳,获得10
33秒前
优秀白竹完成签到,获得积分20
33秒前
鹤烟发布了新的文献求助10
34秒前
wanci应助tian采纳,获得30
34秒前
优秀白竹发布了新的文献求助10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673449
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784078
捐赠科研通 2939630
什么是DOI,文献DOI怎么找? 1611183
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290