Land use optimization modelling with ecological priority perspective for large-scale spatial planning

土地利用 计算机科学 蚁群优化算法 比例(比率) 过程(计算) 环境资源管理 土地覆盖 环境科学 生态学 地理 人工智能 地图学 生物 操作系统
作者
Weilin Wang,Limin Jiao,Qiqi Jia,Jiafeng Liu,Wenjing Mao,Zhibang Xu,Wende Li
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:65: 102575-102575 被引量:49
标识
DOI:10.1016/j.scs.2020.102575
摘要

Land-use optimization model provides an effective means of finding solutions to mitigate ecological impacts resulting from land use and land cover changes (LUCCs). However, current land-use optimization models usually underestimate the control/ effectiveness of ecological indicators in the model's operation process. How to incorporate ecological indicators into the land-use simulation to optimize multiple land-use patterns is scarce and worth discussing. In our study, we proposed a Future Land use Optimization model for Ecological protection (FLOE) by integrating a cellular automata (CA) model, ant colony optimization (ACO) algorithm, and ecological protection for optimizing land-use patterns from an ecological priority perspective. Firstly, we discuss the coupling pattern in incorporating ecological indicators into models to support the use of models for design and verification in large-scale land-use optimization. Secondly, the proposed FLOE model improves the effectiveness of ecological indicators in the land-use optimization process and better meets the predetermined optimization objectives in a dynamic feedback mechanism. The LUCCs of the Yangtze River Economic Belt (YREB) during 2010–2015 were selected to validate the applicability of the proposed FLOE model. The validation results show that compared to actual LUCCs, the proposed model can significantly reduce ecosystem function loss. Moreover, the proposed model was also applied to the land use optimization from 2010 to 2030 in YREB. The optimization results show a 31.23 % reduction in the total ecosystem function loss than land-use simulation without ecological optimization. The study is expected to provide a reference for land use optimization modelling with ecological conservation in methodology and offers important implications for the formulation and management of large-scale spatial planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
归尘发布了新的文献求助10
3秒前
长孙哲瀚完成签到,获得积分10
3秒前
UMA发布了新的文献求助10
4秒前
wjw完成签到,获得积分10
5秒前
传奇3应助一一采纳,获得10
6秒前
CuvJ发布了新的文献求助30
6秒前
清新的Q发布了新的文献求助10
6秒前
balabala完成签到,获得积分10
6秒前
7秒前
灌肠高手发布了新的文献求助10
8秒前
蒹葭苍苍完成签到,获得积分10
9秒前
池鱼完成签到,获得积分10
10秒前
JamesPei应助UMA采纳,获得10
10秒前
研友_VZG7GZ应助南山无梅落采纳,获得10
11秒前
灌肠高手完成签到,获得积分20
12秒前
ED应助友好的寒云采纳,获得20
13秒前
wu8577应助科研通管家采纳,获得15
13秒前
13秒前
13秒前
13秒前
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
yy发布了新的文献求助10
13秒前
sstargazer完成签到,获得积分10
14秒前
Jaden完成签到,获得积分10
15秒前
Parotodus完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
友好故事关注了科研通微信公众号
20秒前
UMA完成签到,获得积分10
21秒前
抑郁小鼠解剖家完成签到,获得积分10
22秒前
23秒前
24秒前
萘GAN发布了新的文献求助10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891