Accurate Estimation of the Proportion of Mixed Land Use at the Street-Block Level by Integrating High Spatial Resolution Images and Geospatial Big Data

地理空间分析 计算机科学 土地利用 大数据 块(置换群论) 卷积神经网络 遥感 数据挖掘 土地覆盖 空间分析 地图学 地理 人工智能 数学 土木工程 几何学 工程类
作者
Jialyu He,Xia Li,Penghua Liu,Xinxin Wu,Jinbao Zhang,Dachuan Zhang,Xiaojuan Liu,Yao Yao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (8): 6357-6370 被引量:42
标识
DOI:10.1109/tgrs.2020.3028622
摘要

Mixed land use has been widely used as a planning tool to improve the functionality of cities. However, depicting mixed land use is rather difficult due to its complexities. Previous studies have decomposed urban land areas using either remote sensing images or geospatial big data. Few studies have combined these two data sources because of the lack of methodologies. This article proposed an end-to-end two-stream convolutional neural network (CNN) for combining features (CF-CNN) to estimate the proportion of mixed land use by integrating high spatial resolution (HSR) images and geospatial big data of real-time Tencent user density (RTUD) data. Two deep learning networks, one for image information extraction and other for human activity-related information extraction, are used to construct two branches of CF-CNN. The mixed land use can be described by calculating the proportions of each land use type at the street-block level. Compared with methods for using single-source data, CF-CNN obtained the highest classification accuracy. We further applied the Shannon diversity index (SHDI) to quantify the agglomerated urban mixed land use. The Spearman correlation coefficients among the SHDI, community distance, and neighborhood vibrancy were calculated to verify the effectiveness of the mixed land use composition. Our framework provided an alternative way of identifying mixed land use structures by integrating multisource data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
飘逸子轩完成签到,获得积分10
1秒前
koreyoshi发布了新的文献求助10
1秒前
1秒前
mysci发布了新的文献求助10
1秒前
思源应助yuyu采纳,获得10
2秒前
ting完成签到,获得积分10
2秒前
2秒前
李爱国应助Luffy采纳,获得10
2秒前
酷炫柔发布了新的文献求助10
2秒前
3秒前
曲意风华完成签到,获得积分10
3秒前
3秒前
怕黑雨竹完成签到,获得积分10
4秒前
年年完成签到,获得积分10
4秒前
lxz关注了科研通微信公众号
4秒前
5秒前
JMrider完成签到,获得积分10
5秒前
忐忑的妙柏完成签到,获得积分10
6秒前
YY发布了新的文献求助10
6秒前
给我好好读书完成签到,获得积分10
6秒前
欣喜若灵发布了新的文献求助10
6秒前
Lucas应助过气的蓝精灵采纳,获得10
6秒前
张玮发布了新的文献求助30
7秒前
7秒前
yaya应助zoey采纳,获得20
7秒前
隐形曼青应助伶俐骁采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
福祸相依发布了新的文献求助10
8秒前
潇洒依白发布了新的文献求助10
9秒前
墨西哥猪肉卷完成签到,获得积分10
9秒前
易研学术完成签到,获得积分10
9秒前
旺旺大礼包完成签到,获得积分10
10秒前
wyg512发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219