已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate Estimation of the Proportion of Mixed Land Use at the Street-Block Level by Integrating High Spatial Resolution Images and Geospatial Big Data

地理空间分析 计算机科学 土地利用 大数据 块(置换群论) 卷积神经网络 遥感 数据挖掘 土地覆盖 空间分析 地图学 地理 人工智能 数学 几何学 工程类 土木工程
作者
Jialyu He,Xia Li,Penghua Liu,Xinxin Wu,Jinbao Zhang,Dachuan Zhang,Xiaojuan Liu,Yao Yao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (8): 6357-6370 被引量:42
标识
DOI:10.1109/tgrs.2020.3028622
摘要

Mixed land use has been widely used as a planning tool to improve the functionality of cities. However, depicting mixed land use is rather difficult due to its complexities. Previous studies have decomposed urban land areas using either remote sensing images or geospatial big data. Few studies have combined these two data sources because of the lack of methodologies. This article proposed an end-to-end two-stream convolutional neural network (CNN) for combining features (CF-CNN) to estimate the proportion of mixed land use by integrating high spatial resolution (HSR) images and geospatial big data of real-time Tencent user density (RTUD) data. Two deep learning networks, one for image information extraction and other for human activity-related information extraction, are used to construct two branches of CF-CNN. The mixed land use can be described by calculating the proportions of each land use type at the street-block level. Compared with methods for using single-source data, CF-CNN obtained the highest classification accuracy. We further applied the Shannon diversity index (SHDI) to quantify the agglomerated urban mixed land use. The Spearman correlation coefficients among the SHDI, community distance, and neighborhood vibrancy were calculated to verify the effectiveness of the mixed land use composition. Our framework provided an alternative way of identifying mixed land use structures by integrating multisource data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔尔完成签到,获得积分10
刚刚
乐乐应助曹梦梦采纳,获得10
1秒前
华仔应助木木杉采纳,获得10
2秒前
善学以致用应助Dylan采纳,获得10
2秒前
孤鸿.完成签到 ,获得积分10
9秒前
Fern完成签到 ,获得积分10
15秒前
16秒前
18秒前
21秒前
乔谷雪发布了新的文献求助10
22秒前
chenxiaobei发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助150
23秒前
chujun_cai完成签到 ,获得积分10
23秒前
大胆的忆安完成签到 ,获得积分10
24秒前
25秒前
木木杉发布了新的文献求助10
26秒前
30秒前
脑洞疼应助小远采纳,获得10
30秒前
31秒前
Dylan发布了新的文献求助10
32秒前
bkagyin应助小赵采纳,获得10
34秒前
z7777777发布了新的文献求助10
36秒前
聪慧芷巧发布了新的文献求助10
36秒前
PAD完成签到,获得积分10
37秒前
干净溪流发布了新的文献求助50
41秒前
西瓜完成签到 ,获得积分10
41秒前
41秒前
41秒前
41秒前
42秒前
z7777777完成签到,获得积分10
43秒前
小赵发布了新的文献求助10
45秒前
47秒前
小远发布了新的文献求助10
47秒前
曹梦梦发布了新的文献求助10
47秒前
Dylan完成签到 ,获得积分10
51秒前
与山发布了新的文献求助10
52秒前
迷路的夏之完成签到,获得积分10
52秒前
52秒前
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959964
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128397
捐赠科研通 3238196
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042