Accurate Estimation of the Proportion of Mixed Land Use at the Street-Block Level by Integrating High Spatial Resolution Images and Geospatial Big Data

地理空间分析 计算机科学 土地利用 大数据 块(置换群论) 卷积神经网络 遥感 数据挖掘 土地覆盖 空间分析 地图学 地理 人工智能 数学 几何学 工程类 土木工程
作者
Jialyu He,Xia Li,Penghua Liu,Xinxin Wu,Jinbao Zhang,Dachuan Zhang,Xiaojuan Liu,Yao Yao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (8): 6357-6370 被引量:42
标识
DOI:10.1109/tgrs.2020.3028622
摘要

Mixed land use has been widely used as a planning tool to improve the functionality of cities. However, depicting mixed land use is rather difficult due to its complexities. Previous studies have decomposed urban land areas using either remote sensing images or geospatial big data. Few studies have combined these two data sources because of the lack of methodologies. This article proposed an end-to-end two-stream convolutional neural network (CNN) for combining features (CF-CNN) to estimate the proportion of mixed land use by integrating high spatial resolution (HSR) images and geospatial big data of real-time Tencent user density (RTUD) data. Two deep learning networks, one for image information extraction and other for human activity-related information extraction, are used to construct two branches of CF-CNN. The mixed land use can be described by calculating the proportions of each land use type at the street-block level. Compared with methods for using single-source data, CF-CNN obtained the highest classification accuracy. We further applied the Shannon diversity index (SHDI) to quantify the agglomerated urban mixed land use. The Spearman correlation coefficients among the SHDI, community distance, and neighborhood vibrancy were calculated to verify the effectiveness of the mixed land use composition. Our framework provided an alternative way of identifying mixed land use structures by integrating multisource data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观的访枫完成签到,获得积分10
1秒前
不配.应助xtw采纳,获得20
2秒前
xiaogang127发布了新的文献求助10
2秒前
2秒前
3秒前
九点半上课了完成签到,获得积分10
4秒前
4秒前
和谐听莲发布了新的文献求助10
4秒前
5秒前
6秒前
科研小白发布了新的文献求助10
6秒前
腾飞发布了新的文献求助10
7秒前
由由发布了新的文献求助30
8秒前
华仔应助欣喜的机器猫采纳,获得10
8秒前
8秒前
11秒前
handle发布了新的文献求助10
11秒前
Ava应助闪电采纳,获得10
12秒前
wannnng发布了新的文献求助10
13秒前
DJ发布了新的文献求助10
14秒前
15秒前
传奇3应助windmill采纳,获得30
16秒前
21秒前
Akim应助科研小肖采纳,获得30
22秒前
天天快乐应助纯真的安双采纳,获得10
23秒前
ardejiang发布了新的文献求助10
23秒前
24秒前
香蕉觅云应助今天开心吗采纳,获得10
26秒前
赘婿应助和谐听莲采纳,获得10
29秒前
zjujirenjie完成签到,获得积分10
30秒前
纯真的安双完成签到,获得积分20
30秒前
1234发布了新的文献求助10
31秒前
惜曦完成签到 ,获得积分10
33秒前
飞向天空的牛完成签到,获得积分10
33秒前
dachengzi完成签到,获得积分10
37秒前
ccc完成签到 ,获得积分10
37秒前
zjujirenjie发布了新的文献求助10
37秒前
CSUST科研一哥应助Rheane采纳,获得10
38秒前
buno应助科研通管家采纳,获得10
38秒前
李健应助科研通管家采纳,获得10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302