Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ

材料科学 烧结 热障涂层 氧化钇稳定氧化锆 兴奋剂 四方晶系 热膨胀 拉曼光谱 立方氧化锆 陶瓷 复合材料 化学工程 分析化学(期刊) 晶体结构 结晶学 光学 物理 工程类 光电子学 色谱法 化学
作者
Xiaodong Wei,Guoliang Hou,Yulong An,Pan Yang,Xinqing Zhao,Hang Zhou,Jianmin Chen
出处
期刊:Ceramics International [Elsevier]
卷期号:47 (5): 6875-6883 被引量:19
标识
DOI:10.1016/j.ceramint.2020.11.032
摘要

6-8 wt% yttria-stabilized zirconia (YSZ) has been widely employed as thermal barrier coating (TBC) to protect the high-temperature components of aero-engine and gas-turbine. However, the phase transition and sintering densification at high temperature seriously limit its application above 1200 °C. On account of this, CeO2 and Sc2O3 were doped into the YSZ by solid-state reaction sintering method in this paper. The effects of doping on the crystal structure, phase transition behavior and sintering resistance were investigated on the basis of XRD, Raman and FESEM, and the evolution of thermal properties of the ceramics was also analyzed. The results indicated that doped CeO2 increases the cell volume and tetragonal degree, but doped Sc2O3 was opposite. Co-doping caused not only significant difference in atomic mass and radius but also the formation of a large number of oxygen vacancies in the ceramics. Therefore, CeScYSZ showed the lowest thermal conductivity (1.53 W‧m−1‧K−1), which was about 23% lower than that of YSZ (2.00 W‧m−1‧K−1). More importantly, the oxygen vacancy also effectively stabilized the octet lattice, while the increase of lattice energy caused by Sc-O bond made it difficult for ions to misplace, which finally well prevented the transformation from t phase to m phase. There was no detrimental m-ZrO2 phase formation in the CeScYSZ after 120 h at 1500 °C. Besides, Co-doping could simultaneously overcome the poor sintering resistance caused by single CeO2 doping and the lower thermal expansion coefficient caused by single Sc2O3 doping, thus the CeScYSZ should be an ideal long-acting thermal protection material at higher temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Flac采纳,获得10
刚刚
刚刚
喜喜完成签到,获得积分10
1秒前
1秒前
1秒前
李子完成签到,获得积分10
2秒前
科研通AI5应助kld采纳,获得10
2秒前
guozizi发布了新的文献求助10
2秒前
2秒前
小二郎应助yang采纳,获得10
2秒前
3秒前
3秒前
良药发布了新的文献求助10
3秒前
领导范儿应助仄言采纳,获得10
3秒前
liruiyi发布了新的文献求助30
4秒前
自觉紫安发布了新的文献求助10
4秒前
姜建正发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
Jenny应助XX采纳,获得10
5秒前
Dawn发布了新的文献求助10
6秒前
清秀从霜发布了新的文献求助50
6秒前
三点半发布了新的文献求助10
6秒前
fang发布了新的文献求助10
6秒前
完美世界应助外向的钢笔采纳,获得10
6秒前
时冬冬发布了新的文献求助30
6秒前
7秒前
原野小年发布了新的文献求助10
7秒前
7秒前
良药完成签到,获得积分10
8秒前
10秒前
刘东龙发布了新的文献求助10
10秒前
10秒前
10秒前
nhh发布了新的文献求助10
11秒前
科研通AI5应助223311采纳,获得10
11秒前
Pomelo发布了新的文献求助10
11秒前
Moihan发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339