Identification of suicidality in adolescent major depressive disorder patients using sMRI: A machine learning approach.

自杀意念 重性抑郁障碍 眶额皮质 心理学 扣带回前部 自杀未遂 毒物控制 人口 精神科 临床心理学 自杀预防 医学 认知 前额叶皮质 医疗急救 环境卫生
作者
Su Hong,Yang S. Liu,Bo Cao,Jun Cao,Ming Ai,Jianmei Chen,Andrew J. Greenshaw,Li Kuang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:280: 72-76 被引量:44
标识
DOI:10.1016/j.jad.2020.10.077
摘要

Background: Suicidal behavior is a major concern for patients who suffer from major depressive disorder (MDD), especially among adolescents and young adults. Machine learning models with the capability of suicide risk identification at an individual level could improve suicide prevention among high-risk patient population. Methods: A cross-sectional assessment was conducted on a sample of 66 adolescents/young adults diagnosed with MDD. The structural T1-weighted MRI scan of each subject was processed using the FreeSurfer software. The classification model was conducted using the Support Vector Machine - Recursive Feature Elimination (SVM-RFE) algorithm to distinguish suicide attempters and patients with suicidal ideation but without attempts. Results: The SVM model was able to correctly identify suicide attempters and patients with suicidal ideation but without attempts with a cross-validated prediction balanced accuracy of 78.59%, the sensitivity was 73.17% and the specificity was 84.0%. The positive predictive value of suicide attempt was 88.24%, and the negative predictive value was 65.63%. Right lateral orbitofrontal thickness, left caudal anterior cingulate thickness, left fusiform thickness, left temporal pole volume, right rostral anterior cingulate volume, left lateral orbitofrontal thickness, left posterior cingulate thickness, right pars orbitalis thickness, right posterior cingulate thickness, and left medial orbitofrontal thickness were the 10 top-ranked classifiers for suicide attempt. Conclusions: The findings indicated that structural MRI data can be useful for the classification of suicide risk. The algorithm developed in current study may lead to identify suicide attempt risk among MDD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w1发布了新的文献求助10
刚刚
zxc完成签到,获得积分10
刚刚
传奇3应助宋祝福采纳,获得10
刚刚
夏天发布了新的文献求助10
刚刚
风中的善愁完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
科研小白完成签到,获得积分10
3秒前
EasonYan完成签到,获得积分20
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
corgi完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
WHT完成签到,获得积分10
5秒前
浩二应助科研通管家采纳,获得10
5秒前
Ll完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
小林不熬夜完成签到 ,获得积分10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
cyy1226完成签到,获得积分10
6秒前
浩二应助科研通管家采纳,获得10
6秒前
加湿器应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
会魔法的老人完成签到,获得积分10
7秒前
1sunpf完成签到,获得积分10
7秒前
spf完成签到,获得积分10
8秒前
9秒前
无所谓完成签到 ,获得积分10
9秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆热工水力特性及安全审评关键问题研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052912
求助须知:如何正确求助?哪些是违规求助? 2710137
关于积分的说明 7419790
捐赠科研通 2354754
什么是DOI,文献DOI怎么找? 1246249
科研通“疑难数据库(出版商)”最低求助积分说明 606002
版权声明 595975