材料科学
阴极
水溶液
钒
功率密度
X射线光电子能谱
化学工程
电池(电)
五氧化二铁
拉曼光谱
光电子学
纳米技术
冶金
有机化学
电气工程
功率(物理)
工程类
物理
化学
光学
量子力学
作者
Muhammad Sufyan Javed,Hang Lei,Zilong Wang,Botian Liu,Xiang Cai,Wenjie Mai
出处
期刊:Nano Energy
[Elsevier]
日期:2020-02-04
卷期号:70: 104573-104573
被引量:276
标识
DOI:10.1016/j.nanoen.2020.104573
摘要
Rechargeable aqueous Zn-ion batteries (ZIBs) are regarded as one of the most promising energy storage devices due to their intrinsic safety and the extensive stockpile of Zn. It is still challenging to prepare ultrafast flexible devices with high energy/power density and satisfactory stability. Herein, two-dimensional ultrathin vanadium pentoxide (V2O5) nanosheets grown directly on titanium (Ti) substrate (V2O5–Ti) are prepared as a novel flexible cathode with high energy density for ultrafast aqueous and flexible ZIBs. Benefiting from the merits of exposed active sites and increased electrical conductivity, our optimized V2O5–Ti cathode exhibits a remarkable discharge capacity of 503.1 mAh g−1 at 100 mA g−1 and long-term stability with 86% retention after over 700 cycles at 500 mA g−1 in the aqueous coin cell. The charge storage mechanism of this V2O5–Ti cathode is investigated by in-situ Raman spectroscopy, ex-situ X-ray diffraction, and X-ray photoelectron spectroscopy. Remarkably, based on this flexible cathode, we designed an ultrafast and flexible quasi-solid-state zinc ion battery (f-V2O5–Ti//Zn), which can achieve the capacity of 377.5 mAh g−1 and energy density of 622 Wh kg−1 when charged at 4 A g−1 for less than 6 min. It also exhibits the power density of 6.4 kW kg−1 at an ultrahigh current density of 20 A g−1, which outperforms most previously reported aqueous/flexible ZIBs. As a result of superior performance, our ultrafast flexible quasi-solid-state ZIB is believed to be a promising candidate for flexible and wearable energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI