Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction

医学 布里氏评分 射血分数 逻辑回归 接收机工作特性 心力衰竭 内科学 置信区间 心脏病学 统计 数学
作者
Suveen Angraal,Bobak J. Mortazavi,Aakriti Gupta,Rohan Khera,Tariq Ahmad,Nihar R. Desai,Daniel Jacoby,Frederick A. Masoudi,John A. Spertus,Harlan M. Krumholz
出处
期刊:Jacc-Heart Failure [Elsevier]
卷期号:8 (1): 12-21 被引量:217
标识
DOI:10.1016/j.jchf.2019.06.013
摘要

This study sought to develop models for predicting mortality and heart failure (HF) hospitalization for outpatients with HF with preserved ejection fraction (HFpEF) in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial.Although risk assessment models are available for patients with HF with reduced ejection fraction, few have assessed the risks of death and hospitalization in patients with HFpEF.The following 5 methods: logistic regression with a forward selection of variables; logistic regression with a lasso regularization for variable selection; random forest (RF); gradient descent boosting; and support vector machine, were used to train models for assessing risks of mortality and HF hospitalization through 3 years of follow-up and were validated using 5-fold cross-validation. Model discrimination and calibration were estimated using receiver-operating characteristic curves and Brier scores, respectively. The top prediction variables were assessed by using the best performing models, using the incremental improvement of each variable in 5-fold cross-validation.The RF was the best performing model with a mean C-statistic of 0.72 (95% confidence interval [CI]: 0.69 to 0.75) for predicting mortality (Brier score: 0.17), and 0.76 (95% CI: 0.71 to 0.81) for HF hospitalization (Brier score: 0.19). Blood urea nitrogen levels, body mass index, and Kansas City Cardiomyopathy Questionnaire (KCCQ) subscale scores were strongly associated with mortality, whereas hemoglobin level, blood urea nitrogen, time since previous HF hospitalization, and KCCQ scores were the most significant predictors of HF hospitalization.These models predict the risks of mortality and HF hospitalization in patients with HFpEF and emphasize the importance of health status data in determining prognosis. (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist [TOPCAT]; NCT00094302).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
1秒前
aero完成签到 ,获得积分10
3秒前
123号完成签到,获得积分10
5秒前
充电宝应助TT采纳,获得10
7秒前
8秒前
8秒前
英姑应助荒野星辰采纳,获得10
10秒前
10秒前
YHY完成签到,获得积分10
12秒前
科研通AI5应助魏伯安采纳,获得10
12秒前
caoyy发布了新的文献求助10
12秒前
13秒前
14秒前
张喻235532完成签到,获得积分10
15秒前
失眠虔纹发布了新的文献求助10
16秒前
香蕉觅云应助糊涂的小伙采纳,获得10
16秒前
16秒前
sutharsons应助科研通管家采纳,获得200
18秒前
打打应助科研通管家采纳,获得10
18秒前
axin应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
李健应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
19秒前
lu应助科研通管家采纳,获得10
19秒前
19秒前
华仔应助科研通管家采纳,获得10
19秒前
研友_MLJldZ发布了新的文献求助10
19秒前
wys完成签到 ,获得积分10
20秒前
21秒前
michaelvin完成签到,获得积分10
21秒前
学术大白完成签到 ,获得积分10
24秒前
24秒前
SYT完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849