Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction

医学 布里氏评分 射血分数 逻辑回归 接收机工作特性 心力衰竭 内科学 置信区间 心脏病学 统计 数学
作者
Suveen Angraal,Bobak J. Mortazavi,Aakriti Gupta,Rohan Khera,Tariq Ahmad,Nihar R. Desai,Daniel Jacoby,Frederick A. Masoudi,John A. Spertus,Harlan M. Krumholz
出处
期刊:Jacc-Heart Failure [Elsevier]
卷期号:8 (1): 12-21 被引量:217
标识
DOI:10.1016/j.jchf.2019.06.013
摘要

This study sought to develop models for predicting mortality and heart failure (HF) hospitalization for outpatients with HF with preserved ejection fraction (HFpEF) in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial.Although risk assessment models are available for patients with HF with reduced ejection fraction, few have assessed the risks of death and hospitalization in patients with HFpEF.The following 5 methods: logistic regression with a forward selection of variables; logistic regression with a lasso regularization for variable selection; random forest (RF); gradient descent boosting; and support vector machine, were used to train models for assessing risks of mortality and HF hospitalization through 3 years of follow-up and were validated using 5-fold cross-validation. Model discrimination and calibration were estimated using receiver-operating characteristic curves and Brier scores, respectively. The top prediction variables were assessed by using the best performing models, using the incremental improvement of each variable in 5-fold cross-validation.The RF was the best performing model with a mean C-statistic of 0.72 (95% confidence interval [CI]: 0.69 to 0.75) for predicting mortality (Brier score: 0.17), and 0.76 (95% CI: 0.71 to 0.81) for HF hospitalization (Brier score: 0.19). Blood urea nitrogen levels, body mass index, and Kansas City Cardiomyopathy Questionnaire (KCCQ) subscale scores were strongly associated with mortality, whereas hemoglobin level, blood urea nitrogen, time since previous HF hospitalization, and KCCQ scores were the most significant predictors of HF hospitalization.These models predict the risks of mortality and HF hospitalization in patients with HFpEF and emphasize the importance of health status data in determining prognosis. (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist [TOPCAT]; NCT00094302).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Migue应助科研通管家采纳,获得10
5秒前
合适靖儿完成签到 ,获得积分10
8秒前
11秒前
吕圆圆圆啊完成签到,获得积分10
15秒前
踏实的无敌完成签到,获得积分10
21秒前
风起枫落完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
26秒前
Meteor636完成签到 ,获得积分10
30秒前
fjhsg25发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
36秒前
zenabia完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
41秒前
沉静觅风完成签到,获得积分10
51秒前
我来也完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
玖月完成签到 ,获得积分10
56秒前
ng完成签到 ,获得积分10
58秒前
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
深情安青应助莫大采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
John完成签到 ,获得积分10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
ioio完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
Drlee完成签到 ,获得积分10
1分钟前
埃森完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李伟完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482634
求助须知:如何正确求助?哪些是违规求助? 4583368
关于积分的说明 14389218
捐赠科研通 4512540
什么是DOI,文献DOI怎么找? 2473057
邀请新用户注册赠送积分活动 1459201
关于科研通互助平台的介绍 1432781