Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction

医学 布里氏评分 射血分数 逻辑回归 接收机工作特性 心力衰竭 内科学 置信区间 心脏病学 统计 数学
作者
Suveen Angraal,Bobak J. Mortazavi,Aakriti Gupta,Rohan Khera,Tariq Ahmad,Nihar R. Desai,Daniel Jacoby,Frederick A. Masoudi,John A. Spertus,Harlan M. Krumholz
出处
期刊:Jacc-Heart Failure [Elsevier BV]
卷期号:8 (1): 12-21 被引量:217
标识
DOI:10.1016/j.jchf.2019.06.013
摘要

This study sought to develop models for predicting mortality and heart failure (HF) hospitalization for outpatients with HF with preserved ejection fraction (HFpEF) in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial.Although risk assessment models are available for patients with HF with reduced ejection fraction, few have assessed the risks of death and hospitalization in patients with HFpEF.The following 5 methods: logistic regression with a forward selection of variables; logistic regression with a lasso regularization for variable selection; random forest (RF); gradient descent boosting; and support vector machine, were used to train models for assessing risks of mortality and HF hospitalization through 3 years of follow-up and were validated using 5-fold cross-validation. Model discrimination and calibration were estimated using receiver-operating characteristic curves and Brier scores, respectively. The top prediction variables were assessed by using the best performing models, using the incremental improvement of each variable in 5-fold cross-validation.The RF was the best performing model with a mean C-statistic of 0.72 (95% confidence interval [CI]: 0.69 to 0.75) for predicting mortality (Brier score: 0.17), and 0.76 (95% CI: 0.71 to 0.81) for HF hospitalization (Brier score: 0.19). Blood urea nitrogen levels, body mass index, and Kansas City Cardiomyopathy Questionnaire (KCCQ) subscale scores were strongly associated with mortality, whereas hemoglobin level, blood urea nitrogen, time since previous HF hospitalization, and KCCQ scores were the most significant predictors of HF hospitalization.These models predict the risks of mortality and HF hospitalization in patients with HFpEF and emphasize the importance of health status data in determining prognosis. (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist [TOPCAT]; NCT00094302).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guhuihaozi发布了新的文献求助10
1秒前
guhuihaozi发布了新的文献求助10
1秒前
guhuihaozi发布了新的文献求助10
1秒前
guhuihaozi发布了新的文献求助10
1秒前
guhuihaozi发布了新的文献求助10
1秒前
guhuihaozi发布了新的文献求助10
1秒前
hm完成签到,获得积分10
2秒前
2秒前
CipherSage应助逺山長采纳,获得10
2秒前
2秒前
完美世界应助拉扣采纳,获得10
3秒前
菜菜完成签到,获得积分10
3秒前
3秒前
3秒前
GH07355018完成签到,获得积分10
4秒前
中国任完成签到 ,获得积分10
4秒前
4秒前
5秒前
星宿完成签到,获得积分10
5秒前
CodeCraft应助Jemmy采纳,获得10
5秒前
6秒前
科研通AI5应助Oil采纳,获得10
6秒前
领导范儿应助研友_LOKqmL采纳,获得10
6秒前
xiaochaoge应助机智的皮皮虾采纳,获得10
6秒前
善学以致用应助LLX123采纳,获得10
7秒前
xxyy发布了新的文献求助10
8秒前
8秒前
游明霞发布了新的文献求助10
8秒前
8秒前
心绒完成签到,获得积分10
8秒前
bodhi发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
轻nxwjn完成签到,获得积分10
9秒前
liuyifei发布了新的文献求助20
9秒前
9秒前
情怀应助chen采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480