已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

计算机科学 网络功能虚拟化 虚拟化 软件定义的网络 功能(生物学) 网络虚拟化 领域(数学分析) 软件 计算机网络 操作系统 云计算 数学分析 数学 进化生物学 生物
作者
Kuljeet Kaur,Sahil Garg,Georges Kaddoum,Franeois Gagnon,Neeraj Kumar,Syed Hassan Ahmed
标识
DOI:10.1109/infcomw.2019.8845314
摘要

Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms). The experimental results demonstrate that the proposed scheme achieves better results in comparison to the e-Nen-dominated Sorting Genetic Algorithm (NSGA)-II (ϵ-NSGA-II) with the respect to the overall energy consumption and optimal deployment of VNFs in multi-domain SDN scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高山流水完成签到,获得积分10
刚刚
2秒前
4秒前
情怀应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
找文献完成签到 ,获得积分10
8秒前
9秒前
谐音梗别扣钱完成签到 ,获得积分10
9秒前
wwho_O完成签到 ,获得积分10
9秒前
walk发布了新的文献求助10
9秒前
11秒前
ZPQ完成签到 ,获得积分10
12秒前
从容芮完成签到,获得积分0
12秒前
大胆易巧完成签到 ,获得积分10
15秒前
bjyx完成签到 ,获得积分10
18秒前
123123完成签到 ,获得积分10
18秒前
18秒前
枯荣完成签到 ,获得积分10
22秒前
明理易巧发布了新的文献求助10
22秒前
24秒前
年轻薯片完成签到 ,获得积分10
26秒前
27秒前
azhar完成签到,获得积分10
28秒前
吕敬瑶完成签到,获得积分10
29秒前
白茶完成签到 ,获得积分10
30秒前
君子兰发布了新的文献求助10
30秒前
吕敬瑶发布了新的文献求助10
32秒前
苗条白枫完成签到 ,获得积分10
32秒前
old幽露露完成签到 ,获得积分10
34秒前
君子兰完成签到,获得积分10
39秒前
申梦兵完成签到 ,获得积分10
40秒前
魏凯源完成签到,获得积分10
41秒前
walk发布了新的文献求助10
46秒前
HarryYang完成签到 ,获得积分10
46秒前
47秒前
小米发布了新的文献求助10
52秒前
高贵战斗机完成签到,获得积分20
54秒前
明理易巧完成签到,获得积分10
55秒前
充电宝应助aaa采纳,获得10
55秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634439
求助须知:如何正确求助?哪些是违规求助? 4730984
关于积分的说明 14988424
捐赠科研通 4792218
什么是DOI,文献DOI怎么找? 2559372
邀请新用户注册赠送积分活动 1519662
关于科研通互助平台的介绍 1479851