已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

计算机科学 网络功能虚拟化 虚拟化 软件定义的网络 功能(生物学) 网络虚拟化 领域(数学分析) 软件 计算机网络 操作系统 云计算 数学分析 数学 进化生物学 生物
作者
Kuljeet Kaur,Sahil Garg,Georges Kaddoum,Franeois Gagnon,Neeraj Kumar,Syed Hassan Ahmed
标识
DOI:10.1109/infcomw.2019.8845314
摘要

Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms). The experimental results demonstrate that the proposed scheme achieves better results in comparison to the e-Nen-dominated Sorting Genetic Algorithm (NSGA)-II (ϵ-NSGA-II) with the respect to the overall energy consumption and optimal deployment of VNFs in multi-domain SDN scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文无敌完成签到,获得积分10
刚刚
英俊中心完成签到 ,获得积分10
1秒前
1秒前
酷酷海豚完成签到,获得积分10
2秒前
3秒前
嘻嘻完成签到,获得积分10
3秒前
3秒前
昵昵昵昵昵完成签到 ,获得积分10
3秒前
cwy发布了新的文献求助10
3秒前
KsL2177完成签到 ,获得积分10
3秒前
不喝奶茶完成签到 ,获得积分10
3秒前
完美世界应助lwl采纳,获得10
6秒前
chigga发布了新的文献求助10
6秒前
liuniuniu发布了新的文献求助10
7秒前
cwy完成签到,获得积分10
8秒前
酷波er应助桐嘉采纳,获得10
8秒前
fdwonder完成签到,获得积分10
9秒前
别当真完成签到 ,获得积分10
13秒前
wq完成签到 ,获得积分10
13秒前
NexusExplorer应助野猪空手道采纳,获得10
14秒前
猫哈哈完成签到,获得积分10
14秒前
77777完成签到 ,获得积分10
15秒前
000v000完成签到,获得积分10
15秒前
风中芷容完成签到 ,获得积分10
15秒前
星辰大海应助liuniuniu采纳,获得10
15秒前
LX有理想完成签到 ,获得积分10
16秒前
nihao完成签到,获得积分20
16秒前
16秒前
李健的小迷弟应助小林采纳,获得10
17秒前
科研通AI6.1应助群山采纳,获得10
18秒前
研友_R2D2完成签到,获得积分10
18秒前
4114完成签到,获得积分10
20秒前
小艾同学完成签到 ,获得积分20
22秒前
如意凝云发布了新的文献求助20
22秒前
23秒前
MiRoRo完成签到 ,获得积分10
23秒前
kai chen完成签到 ,获得积分0
24秒前
852应助liuniuniu采纳,获得10
25秒前
joe完成签到,获得积分10
25秒前
黑巧的融化完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004