亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

计算机科学 网络功能虚拟化 虚拟化 软件定义的网络 功能(生物学) 网络虚拟化 领域(数学分析) 软件 计算机网络 操作系统 云计算 数学 进化生物学 生物 数学分析
作者
Kuljeet Kaur,Sahil Garg,Georges Kaddoum,Franeois Gagnon,Neeraj Kumar,Syed Hassan Ahmed
标识
DOI:10.1109/infcomw.2019.8845314
摘要

Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms). The experimental results demonstrate that the proposed scheme achieves better results in comparison to the e-Nen-dominated Sorting Genetic Algorithm (NSGA)-II (ϵ-NSGA-II) with the respect to the overall energy consumption and optimal deployment of VNFs in multi-domain SDN scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCT完成签到,获得积分10
1秒前
Joven发布了新的文献求助10
5秒前
Joven完成签到,获得积分20
12秒前
在水一方完成签到 ,获得积分0
20秒前
21秒前
Jasper应助小尾巴采纳,获得10
23秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
惠民发布了新的文献求助10
26秒前
27秒前
飞翔的发布了新的文献求助10
30秒前
57秒前
柔弱成危发布了新的文献求助10
1分钟前
科研猫头鹰完成签到,获得积分10
1分钟前
不安的裘完成签到 ,获得积分10
1分钟前
Lucas应助morena采纳,获得10
1分钟前
大史完成签到 ,获得积分10
1分钟前
1分钟前
wyb发布了新的文献求助10
1分钟前
橙橙完成签到,获得积分10
1分钟前
千羽飞完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Shaangueuropa发布了新的文献求助30
2分钟前
飞翔的发布了新的文献求助10
2分钟前
隐形曼青应助江上烟采纳,获得10
2分钟前
Shaangueuropa完成签到,获得积分10
2分钟前
Billy应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
酸奶应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
江上烟发布了新的文献求助10
2分钟前
谨慎外套完成签到,获得积分20
2分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081568
求助须知:如何正确求助?哪些是违规求助? 2734319
关于积分的说明 7532599
捐赠科研通 2383865
什么是DOI,文献DOI怎么找? 1264044
科研通“疑难数据库(出版商)”最低求助积分说明 612506
版权声明 597577