清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

计算机科学 网络功能虚拟化 虚拟化 软件定义的网络 功能(生物学) 网络虚拟化 领域(数学分析) 软件 计算机网络 操作系统 云计算 数学 进化生物学 生物 数学分析
作者
Kuljeet Kaur,Sahil Garg,Georges Kaddoum,Franeois Gagnon,Neeraj Kumar,Syed Hassan Ahmed
标识
DOI:10.1109/infcomw.2019.8845314
摘要

Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms). The experimental results demonstrate that the proposed scheme achieves better results in comparison to the e-Nen-dominated Sorting Genetic Algorithm (NSGA)-II (ϵ-NSGA-II) with the respect to the overall energy consumption and optimal deployment of VNFs in multi-domain SDN scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lynn完成签到 ,获得积分10
10秒前
suzy-123完成签到,获得积分10
18秒前
IvanLIu完成签到 ,获得积分10
19秒前
科研狗完成签到 ,获得积分10
20秒前
32秒前
1分钟前
Cole驳回了慕青应助
1分钟前
1分钟前
hzauhzau完成签到 ,获得积分10
1分钟前
JJJJJin应助wxysanctuary采纳,获得100
2分钟前
如意2023完成签到 ,获得积分10
2分钟前
jerry完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
平平安安发布了新的文献求助10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
属实有点拉胯完成签到 ,获得积分10
3分钟前
elisa828完成签到,获得积分10
3分钟前
想睡觉的小笼包完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
郭晨发布了新的文献求助10
4分钟前
胡杨树2006完成签到,获得积分10
4分钟前
滕皓轩完成签到 ,获得积分10
4分钟前
4分钟前
柒八染完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
xiazhq完成签到,获得积分10
5分钟前
tmobiusx完成签到,获得积分10
5分钟前
5分钟前
上官若男应助lt0217采纳,获得10
6分钟前
6分钟前
淞淞于我完成签到 ,获得积分10
6分钟前
jason完成签到 ,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477