Mapping RNA-seq reads to transcriptomes efficiently based on learning to hash method

计算机科学 散列函数 转录组 弦(物理) 数据挖掘 生物 基因 基因表达 遗传学 数学 数学物理 计算机安全
作者
Xiaohui Yu,Xuejun Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:116: 103539-103539 被引量:8
标识
DOI:10.1016/j.compbiomed.2019.103539
摘要

Accurate and efficient read-alignment is one of the fundamental challenges in RNA-seq analysis. Due to the increasingly large number of reads generated from the RNA-seq experiments, read-alignment is a time-consuming task. Many mappers adopted various strategies to look for potential alignment locations for reads in a tolerable time, and provide adequate information for downstream analysis. But in some transcript analysis tasks, such as transcriptome quantification, the mapping information about the transcripts and positions for reads is sufficient. Thus the original alignment problem can be simplified to a string searching problem since the reads can be mapped contiguously to the transcriptome. Some models for transcript analysis adopt more efficient strategies to solve this simplified problem, but the efficiency is still restricted by handling RNA-seq data in the original read space. We propose a method, bit-mapping, based on learning to hash algorithm for mapping reads to the transcriptome. It learns hash functions from the transcriptome and generates binary hash codes of the sequences, then maps reads to the transcriptome according to their hash codes. Bit-mapping accelerates mapping problems in RNA-seq analysis by reducing the dimension of the read. We evaluate the performance of bit-mapping based on simulated data and real data, and compare it with other popular and state-of-the-art methods, STAR, RapMap, Bowtie 2 and HISAT 2. The comparative results of simulated and real data show that the accuracy of our method is competitive to the existing mappers in terms of mapping efficiency, especially for longer reads (¿ 100 bp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
魔山西红柿完成签到,获得积分10
1秒前
鲸落发布了新的文献求助10
1秒前
周青春偶像完成签到 ,获得积分10
2秒前
3秒前
将将关注了科研通微信公众号
3秒前
陈海明发布了新的文献求助10
3秒前
3秒前
田様应助戴琳采纳,获得10
4秒前
4秒前
完美世界应助HUO采纳,获得10
4秒前
5秒前
皮皮小怪发布了新的文献求助10
5秒前
5秒前
asdfg123发布了新的文献求助10
5秒前
momo完成签到,获得积分10
5秒前
fvnsj完成签到,获得积分10
5秒前
耍酷的夜雪完成签到 ,获得积分10
5秒前
nil发布了新的文献求助10
6秒前
小二郎应助葳蕤苍生采纳,获得10
6秒前
俭朴羊青发布了新的文献求助10
7秒前
高晓澍完成签到,获得积分10
7秒前
CodeCraft应助科研小白采纳,获得10
8秒前
踏实的师发布了新的文献求助10
8秒前
沉默老四发布了新的文献求助10
9秒前
丘比特应助蔺不平采纳,获得10
9秒前
yzm788695发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
约定看星星啊完成签到,获得积分10
11秒前
Cholera发布了新的文献求助10
12秒前
无私的千易完成签到,获得积分10
13秒前
过时的小蘑菇完成签到 ,获得积分10
13秒前
鲸落完成签到 ,获得积分10
13秒前
Vicky完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175