A Review of the Logistic Regression Model with Emphasis on Medical Research

逻辑回归 范畴变量 统计 罗伊特 可能性 拟合优度 回归分析 变量 计量经济学 计算机科学 数学
作者
Ernest Yeboah Boateng,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:07 (04): 190-207 被引量:197
标识
DOI:10.4236/jdaip.2019.74012
摘要

This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures; measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助王银鑫采纳,获得10
刚刚
优美芷蝶发布了新的文献求助10
刚刚
李健的小迷弟应助王王泽采纳,获得10
1秒前
1秒前
破晓完成签到,获得积分10
2秒前
淡淡菠萝发布了新的文献求助10
2秒前
久9完成签到 ,获得积分10
2秒前
sptyzl完成签到 ,获得积分10
2秒前
陈炳蓉完成签到,获得积分10
5秒前
丘奇完成签到,获得积分10
6秒前
星星完成签到 ,获得积分10
8秒前
橘仔乐发布了新的文献求助10
9秒前
10秒前
冷酷愚志完成签到,获得积分10
13秒前
七七发布了新的文献求助10
13秒前
JamesPei应助饱满的醉山采纳,获得10
13秒前
14秒前
王王泽发布了新的文献求助10
15秒前
NexusExplorer应助卑微老大采纳,获得10
18秒前
Two-Capitals发布了新的文献求助10
18秒前
QxQMDR发布了新的文献求助30
19秒前
19秒前
烟花应助hhhm采纳,获得10
20秒前
不配.应助零度采纳,获得20
20秒前
史迪仔完成签到,获得积分10
21秒前
桐桐应助小田睡不醒采纳,获得10
23秒前
Leukocyte完成签到 ,获得积分10
23秒前
愿景完成签到 ,获得积分10
24秒前
ZONG完成签到,获得积分10
24秒前
淳之风发布了新的文献求助10
25秒前
LNN完成签到,获得积分10
25秒前
王王泽完成签到,获得积分20
25秒前
汪小杰发布了新的文献求助10
26秒前
26秒前
kevin完成签到,获得积分10
27秒前
xhh完成签到 ,获得积分10
28秒前
努力加油煤老八完成签到 ,获得积分10
29秒前
寄凡发布了新的文献求助10
30秒前
31秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194