Visualizing Data using t-SNE

等距映射 嵌入 计算机科学 可视化 非线性降维 人工智能 多样性(控制论) 模式识别(心理学) 降维 理论计算机科学 数据挖掘
作者
Laurens van der Maaten,Geoffrey E. Hinton
出处
期刊:Journal of Machine Learning Research [The MIT Press]
卷期号:9 (86): 2579-2605 被引量:35209
摘要

We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助淡淡奇异果采纳,获得10
3秒前
怡然的姒发布了新的文献求助10
4秒前
ccccc发布了新的文献求助10
4秒前
谷雨下完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
烟花应助Jessie采纳,获得10
7秒前
7秒前
田様应助啦啦啦采纳,获得10
7秒前
共享精神应助CHR采纳,获得10
8秒前
科目三应助Blessing采纳,获得10
9秒前
10秒前
ming发布了新的文献求助10
10秒前
11秒前
华仔应助飞鸿踏雪泥采纳,获得10
11秒前
Jasper应助xiha西希采纳,获得10
12秒前
Orange应助高高千琴采纳,获得10
16秒前
16秒前
17秒前
17秒前
20秒前
21秒前
wang发布了新的文献求助10
21秒前
Jc完成签到 ,获得积分10
22秒前
小巧问柳发布了新的文献求助10
25秒前
25秒前
26秒前
高高千琴发布了新的文献求助10
30秒前
贪玩的篮球完成签到,获得积分10
33秒前
淡淡奇异果完成签到,获得积分10
34秒前
bc应助苏卿采纳,获得30
35秒前
35秒前
ccccc完成签到,获得积分10
35秒前
Ben发布了新的文献求助10
37秒前
苏源智发布了新的文献求助10
38秒前
小巧问柳完成签到,获得积分10
38秒前
111完成签到 ,获得积分10
40秒前
小马甲应助加油搬砖采纳,获得10
41秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959