On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2‐a]benzimidazoles by Direct Copper‐Catalyzed Amination

胺化 催化作用 分子内力 化学 组合化学 模块化设计 有机化学 计算机科学 操作系统
作者
Kye‐Simeon Masters,Tom R. M. Rauws,Ashok Kumar Yadav,Wouter Herrebout,Benjamin van der Veken,Bert U. W. Maes
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:17 (23): 6315-6320 被引量:131
标识
DOI:10.1002/chem.201100574
摘要

Chemistry – A European JournalVolume 17, Issue 23 p. 6315-6320 Communication On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2-a]benzimidazoles by Direct Copper-Catalyzed Amination Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author First published: 20 April 2011 https://doi.org/10.1002/chem.201100574Citations: 125Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Not just an acid! An expedient and highly modular synthesis of 6-, 7-, and 8-substituted pyrido[1,2-a]benzimidazoles (4) has been developed by a direct intramolecular CH amination of N-phenylpyridin-2-amines (3). Efficient CH amination of 3 could only be achieved in the presence of catalytic copper and an acid additive. The type of acid (pKa) proved to be crucial for the catalysis. CCl aminations in N-(2-chloroaryl)pyridin-2-amines allow access to 9-substituted pyrido[1,2-a]benzimidazoles. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description chem_201100574_sm_miscellaneous_information.pdf1.3 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1G. Tennant, The Chemistry of Heterocyclic Compounds, Vol. 40 (Eds.: ), Wiley-Interscience, New York, 1980, pp. 257–461. 2For routes to specifically substituted pyrido[1,2-a]benzimidazoles, see: 2aS. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, Synthesis 2007, 3155–3162; 2bC. G. Yan, Q. F. Wang, X. K. Song, J. Sun, J. Org. Chem. 2009, 74, 710–718; 2cK. Panda, J. R. Suresh, H. Ila, H. Junjappa, J. Org. Chem. 2003, 68, 3498–3506. 3Anticancer: 3aM. Sedic, M. Poznic, P. Gehrig, M. Scott, R. Schlapbach, M. Hranjec, G. Karminski-Zamola, K. Pavelic, S. Kraljevic, Mol. Canc. Therap. 2008, 7, 2121–2132; 3bS. A. M. El-Hawash, E.-S. A. M. Badawey, T. Kappe, Pharmazie 1999, 54, 341–345; 3cM. Dupuy, F. Pinguet, O. Chavignon, J.-M. Chezal, J.-C. Chapat, Y. Blache, Chem. Pharm. Bull. 2001, 49, 1061–1065. 4As Ca2+ releasers in skeletal muscle: Y. Takahashi, K.-I. Furakawa, M. Ishibashi, D. Kozutsumi, H. Ishiyama, J. Kobayashi, Y. Ohizumi, Eur. J. Pharmacol., Mol. Pharmacol. Sect. 1995, 288, 285–293. 5Rifaximin, containing the pyrido[1,2-a]benzimidazole core, is a unique gastrointestinal-selective antibiotic for enteric diseases: H. L. Koo, H. L. Dupont, Curr. Opin. Gastroenterol. 2010, 26, 17–25. 6Alteration of the lifespan of eukaryotic organisms: D. F. Goldfarb (University of Rochester, Rochester), US 2009163545, 2009. 7Solubility: 94 mg of 4 a dissolves in 100 mL of distilled H2O at 20 °C; 592 mg at 100 °C. 8Fluorescence: 8aE. N. Smirnova, T. V. Onschenskaya, V. P. Zvolinskii, D. L. Nénde, Fiz. Khim. Poverkhn. 1988, 65–72; 8bJ.-S. Bae, D.-W. Lee, D.-H. Lee, D.-S. Jeong (LG Chem. Ltd, Seoul), WO2007011163A1, 2007. Fluorescent dyes: 8cR. Erckel, D. Günther, H. Frühbeis (Hoechst AG., Frankfurt), DE2640760A1, 1978; [ Chem. Abstr. 1978, 89, 7595]. Dyes: 8dE. Schefzcik (BASF AG., Ludwigshafen), DE2701659A1, 1978; 8eJ. Denhert, G. Lamm (BASF AG., Ludwigshafen), DE2022817, 1972. 9 9aK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, G. L. F. Lemière, Chem. Commun. 2004, 2466–2467; 9bK. T. J. Loones, B. U. W. Maes, C. Meyers, J. Deruytter, J. Org. Chem. 2006, 71, 260–264; 9cK. T. J. Loones, B. U. W. Maes, W. A. Herrebout, R. A. Dommisse, R. A., G. L. F. Lemière, B. J. Van der Veken, Tetrahedron 2007, 63, 3818–3825; 9dK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, Tetrahedron 2007, 63, 8954–8961; 9eT. R. M. Rauws, C. Biancalani, J. W. De Schutter, B. U. W. Maes, Tetrahedron 2010, 66, 6958–6964. 10 10aA. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. 1995, 107, 1456–1459; Angew. Chem. Int. Ed. Engl. 1995, 34, 1348–1350; 10bJ. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609–3612. 11For examples dealing with Pd-catalyzed amination on 2-chloropyridines, see: 11aT. H. M. Jonckers, B. U. W. Maes, G. L. F. Lemière, R. Dommisse, Tetrahedron 2001, 57, 7027–7034; 11bK. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. 2006, 118, 6673–6677; Angew. Chem. Int. Ed. 2006, 45, 6523–6527; 11cS. Hostyn, G. Van Baelen, G. L. F. Lemière, B. U. W. Maes, Adv. Synth. Catal. 2008, 350, 2653–2660; 11dQ. Shen, T. Ogata, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 6586–65956. 12For selected reviews dealing with CH functionalization, see: 12aF. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061–5074; 12bO. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074–1086; 12cX. Chen, K. M. Engle, D.-H. Wang, J. Q. Yu, Angew. Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115; 12dP. Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874–5883; 12eL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976–10011; Angew. Chem. Int. Ed. 2009, 48, 9792–9826; 12fJ. C. Lewis, R. E. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013–1025; 12gB.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949–957; 12hY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234; 12iL.-C. Campeau, D. R. Stuart, K. Fagnou, Aldrichimica Acta 2007, 40, 35–41; 12jD. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238; 12kL. Ackermann, Top. Organomet. Chem. 2007, 24, 35–60; 12lK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084; 12mI. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193; 12nL. C. Campeau, K. Fagnou, Chem. Commun. 2006, 1253–1264; 12oK. Godula, D. Sames, Science 2006, 312, 67–72; 12pA. R. Dick, M. S. Sanford, Tetrahedron 2006, 62, 2439–2463. 13For a review of CH functionalization by metal nitrenoid insertion, see: 13aH. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–424. For an example involving nitrogen activation via oxidative addition, see: 13bY. Tan, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 3676–3677. 14 14aJ. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184–16186; 14bM. Wasa, J. Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058–14059; 14cT.-S. Mei, X. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806–10807; 14dW. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560–14561; 14eW. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald, J. Org. Chem. 2008, 73, 7603–7610; 14fK. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342–14343; 14gG. Brasche, S. L. Buchwald, Angew. Chem. 2008, 120, 1958–1960; Angew. Chem. Int. Ed. 2008, 47, 1932–1934; 14hQ. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang, Z.-J. Shi, Chem. Eur. J. 2009, 15, 7292–7296; 14iL. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2010, 12, 3682–3685; 14jK. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931–2934; K. Inamoto, T. Saito, K. Hiroya, T. Doi, J. Org. Chem. 2010, 75, 3900–3903; 14kN. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908–6909. 15See Supporting Information. 16For example, 1,10-phenanthroline. 17For the importance of the type of acid as solvent (PivOH) in Pd-catalyzed intramolecular oxidative biaryl synthesis, see: B. Liegault, D. Lee, M. P. Huestis, D. R. Stuart, K. Fagnou, J. Org. Chem. 2008, 73, 5022–5028. 18Upon mixing the reagents at room temperature a better solubility of CuII(OAc)2 was observed in the presence of benzoic acids versus acetic acid.[15] 19For application of such conditions to the synthesis of benzoxazoles and benzothiazoles, see: 19aN. Barbero, M. Carril, R. SanMartin, E. Domínguez, Tetrahedron 2007, 63, 10425–10432; 19bJ. H. Spatz, T. Bach, M. Umkkehrer, J. Bardin, G. Ross, C. Burdack, J. Kolb, Tetrahedron Lett. 2007, 48, 9030–9034; 19cG. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802–1808. 20For an intramolecular amination process with stoichiometric CuI salts and iodide or bromide substrates, see: K. Yamada, T. Kubo, H. Tokuyama, T. Fukuyama, Synlett 2002, 0231–0234. 21For amination processes on aryl iodides and bromides with catalytic CuI salts and ligands, see: 21aH.-J. Cristau, P. P. Cellier, J.-F. Spindler, M. Taillefer, Chem. Eur. J. 2004, 10, 5607–5622; 21bA. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727–7729; 21cF. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796; 21dX. Deng, H. McAllister, N. S. Mani, J. Org. Chem. 2009, 74, 5742–5745. 22For a different synthetic route to tetracycle 7, see: C. Venkatesh, G. S. M. Sundaram, H. Ila, H. Junjappa, J. Org. Chem. 2006, 71, 1280–1283. 23KIEs have been observed for Pd-catalyzed intramolecular arylations, see: 23aD. Garcia-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066–1067; 23bD. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880–6886. 24A combination of both inter- and intramolecular KIEs can be significantly more informative than either by itself: E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084–12085. 25For a similar anti-oxy-cupration in meta-selective copper-catalyzed CH bond arylation with Ph2IX as oxidant, see: R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593–1597. 26For an example of β-hydride elimination involving CuII species see: G. Franc, A. Jutand, Dalton Trans. 2010, 39, 7873–7875. 27Recently, our research group showed that in direct functionalization via transition-metal-catalyzed reactions the hydrogen atom in the substrate can be finally lost as H2 gas. H. Prokopcová, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. Van der Veken, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2010, 16, 13063–13067. Raman spectroscopy measurement showed that in the direct aminations studied here, no H2 gas is formed under oxygen free atmosphere (Table 1, entry 24). 28In the Chan–Evans–Lam reaction, CuII acts as a single-electron oxidant: A. E. King, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 5044–5045. 29For kinetic isotope effects in syn β-hydride elimination, see: 29aJ. Evans, J. Schwartz, P. W. Urquhart, J. Organomet. Chem. 1974, 81, C 37-C39; 29bC. J. Jenks, M. Xi, M. X. Yang, B. E. Bent, J. Phys. Chem. 1994, 98, 2152–2157. 30 30aA comparison of kobsd values can only be done for those reactions with a very high selectivity towards the desired reaction product. Otherwise kobsd values do not represent exclusive information on the 3 to 4 transformation. kobsd values were determined for reactions run with 3,4,5-trifluorobenzoic acid as additive. 30bDFT calculations were performed on structures B (Scheme 5), where R=Me. 31H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217–13219. Citing Literature Volume17, Issue23May 27, 2011Pages 6315-6320 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研小卡拉米完成签到,获得积分20
1秒前
Math4396完成签到 ,获得积分10
1秒前
果果完成签到,获得积分10
2秒前
2秒前
magictoo完成签到,获得积分10
3秒前
3秒前
大大完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助150
5秒前
tfldog发布了新的文献求助10
6秒前
小薛完成签到,获得积分10
6秒前
K先生完成签到,获得积分10
7秒前
7秒前
樊小胖发布了新的文献求助10
7秒前
12完成签到,获得积分10
7秒前
bwbpuh3完成签到,获得积分10
8秒前
Morris完成签到,获得积分10
8秒前
8秒前
bkagyin应助iceice采纳,获得10
8秒前
嗦了蜜发布了新的文献求助10
9秒前
下课了吧完成签到,获得积分10
9秒前
niuniu完成签到,获得积分10
11秒前
虚心天亦完成签到,获得积分10
11秒前
我姓孙发布了新的文献求助10
12秒前
12秒前
没有神的过往完成签到,获得积分10
13秒前
悲伤胡萝卜完成签到 ,获得积分10
14秒前
17秒前
niuniu发布了新的文献求助10
17秒前
18秒前
精明的谷丝完成签到 ,获得积分10
18秒前
19秒前
doclarrin完成签到 ,获得积分10
19秒前
陶醉的妙竹完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
栀璃鸳挽发布了新的文献求助10
23秒前
海盗船长发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919696
求助须知:如何正确求助?哪些是违规求助? 4191630
关于积分的说明 13018187
捐赠科研通 3961861
什么是DOI,文献DOI怎么找? 2171918
邀请新用户注册赠送积分活动 1189844
关于科研通互助平台的介绍 1098498