摘要
Chemistry – A European JournalVolume 17, Issue 23 p. 6315-6320 Communication On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2-a]benzimidazoles by Direct Copper-Catalyzed Amination Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author First published: 20 April 2011 https://doi.org/10.1002/chem.201100574Citations: 125Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Not just an acid! An expedient and highly modular synthesis of 6-, 7-, and 8-substituted pyrido[1,2-a]benzimidazoles (4) has been developed by a direct intramolecular CH amination of N-phenylpyridin-2-amines (3). Efficient CH amination of 3 could only be achieved in the presence of catalytic copper and an acid additive. The type of acid (pKa) proved to be crucial for the catalysis. CCl aminations in N-(2-chloroaryl)pyridin-2-amines allow access to 9-substituted pyrido[1,2-a]benzimidazoles. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description chem_201100574_sm_miscellaneous_information.pdf1.3 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1G. Tennant, The Chemistry of Heterocyclic Compounds, Vol. 40 (Eds.: ), Wiley-Interscience, New York, 1980, pp. 257–461. 2For routes to specifically substituted pyrido[1,2-a]benzimidazoles, see: 2aS. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, Synthesis 2007, 3155–3162; 2bC. G. Yan, Q. F. Wang, X. K. Song, J. Sun, J. Org. Chem. 2009, 74, 710–718; 2cK. Panda, J. R. Suresh, H. Ila, H. Junjappa, J. Org. Chem. 2003, 68, 3498–3506. 3Anticancer: 3aM. Sedic, M. Poznic, P. Gehrig, M. Scott, R. Schlapbach, M. Hranjec, G. Karminski-Zamola, K. Pavelic, S. Kraljevic, Mol. Canc. Therap. 2008, 7, 2121–2132; 3bS. A. M. El-Hawash, E.-S. A. M. Badawey, T. Kappe, Pharmazie 1999, 54, 341–345; 3cM. Dupuy, F. Pinguet, O. Chavignon, J.-M. Chezal, J.-C. Chapat, Y. Blache, Chem. Pharm. Bull. 2001, 49, 1061–1065. 4As Ca2+ releasers in skeletal muscle: Y. Takahashi, K.-I. Furakawa, M. Ishibashi, D. Kozutsumi, H. Ishiyama, J. Kobayashi, Y. Ohizumi, Eur. J. Pharmacol., Mol. Pharmacol. Sect. 1995, 288, 285–293. 5Rifaximin, containing the pyrido[1,2-a]benzimidazole core, is a unique gastrointestinal-selective antibiotic for enteric diseases: H. L. Koo, H. L. Dupont, Curr. Opin. Gastroenterol. 2010, 26, 17–25. 6Alteration of the lifespan of eukaryotic organisms: D. F. Goldfarb (University of Rochester, Rochester), US 2009163545, 2009. 7Solubility: 94 mg of 4 a dissolves in 100 mL of distilled H2O at 20 °C; 592 mg at 100 °C. 8Fluorescence: 8aE. N. Smirnova, T. V. Onschenskaya, V. P. Zvolinskii, D. L. Nénde, Fiz. Khim. Poverkhn. 1988, 65–72; 8bJ.-S. Bae, D.-W. Lee, D.-H. Lee, D.-S. Jeong (LG Chem. Ltd, Seoul), WO2007011163A1, 2007. Fluorescent dyes: 8cR. Erckel, D. Günther, H. Frühbeis (Hoechst AG., Frankfurt), DE2640760A1, 1978; [ Chem. Abstr. 1978, 89, 7595]. Dyes: 8dE. Schefzcik (BASF AG., Ludwigshafen), DE2701659A1, 1978; 8eJ. Denhert, G. Lamm (BASF AG., Ludwigshafen), DE2022817, 1972. 9 9aK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, G. L. F. Lemière, Chem. Commun. 2004, 2466–2467; 9bK. T. J. Loones, B. U. W. Maes, C. Meyers, J. Deruytter, J. Org. Chem. 2006, 71, 260–264; 9cK. T. J. Loones, B. U. W. Maes, W. A. Herrebout, R. A. Dommisse, R. A., G. L. F. Lemière, B. J. Van der Veken, Tetrahedron 2007, 63, 3818–3825; 9dK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, Tetrahedron 2007, 63, 8954–8961; 9eT. R. M. Rauws, C. Biancalani, J. W. De Schutter, B. U. W. Maes, Tetrahedron 2010, 66, 6958–6964. 10 10aA. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. 1995, 107, 1456–1459; Angew. Chem. Int. Ed. Engl. 1995, 34, 1348–1350; 10bJ. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609–3612. 11For examples dealing with Pd-catalyzed amination on 2-chloropyridines, see: 11aT. H. M. Jonckers, B. U. W. Maes, G. L. F. Lemière, R. Dommisse, Tetrahedron 2001, 57, 7027–7034; 11bK. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. 2006, 118, 6673–6677; Angew. Chem. Int. Ed. 2006, 45, 6523–6527; 11cS. Hostyn, G. Van Baelen, G. L. F. Lemière, B. U. W. Maes, Adv. Synth. Catal. 2008, 350, 2653–2660; 11dQ. Shen, T. Ogata, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 6586–65956. 12For selected reviews dealing with CH functionalization, see: 12aF. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061–5074; 12bO. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074–1086; 12cX. Chen, K. M. Engle, D.-H. Wang, J. Q. Yu, Angew. Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115; 12dP. Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874–5883; 12eL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976–10011; Angew. Chem. Int. Ed. 2009, 48, 9792–9826; 12fJ. C. Lewis, R. E. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013–1025; 12gB.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949–957; 12hY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234; 12iL.-C. Campeau, D. R. Stuart, K. Fagnou, Aldrichimica Acta 2007, 40, 35–41; 12jD. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238; 12kL. Ackermann, Top. Organomet. Chem. 2007, 24, 35–60; 12lK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084; 12mI. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193; 12nL. C. Campeau, K. Fagnou, Chem. Commun. 2006, 1253–1264; 12oK. Godula, D. Sames, Science 2006, 312, 67–72; 12pA. R. Dick, M. S. Sanford, Tetrahedron 2006, 62, 2439–2463. 13For a review of CH functionalization by metal nitrenoid insertion, see: 13aH. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–424. For an example involving nitrogen activation via oxidative addition, see: 13bY. Tan, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 3676–3677. 14 14aJ. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184–16186; 14bM. Wasa, J. Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058–14059; 14cT.-S. Mei, X. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806–10807; 14dW. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560–14561; 14eW. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald, J. Org. Chem. 2008, 73, 7603–7610; 14fK. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342–14343; 14gG. Brasche, S. L. Buchwald, Angew. Chem. 2008, 120, 1958–1960; Angew. Chem. Int. Ed. 2008, 47, 1932–1934; 14hQ. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang, Z.-J. Shi, Chem. Eur. J. 2009, 15, 7292–7296; 14iL. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2010, 12, 3682–3685; 14jK. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931–2934; K. Inamoto, T. Saito, K. Hiroya, T. Doi, J. Org. Chem. 2010, 75, 3900–3903; 14kN. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908–6909. 15See Supporting Information. 16For example, 1,10-phenanthroline. 17For the importance of the type of acid as solvent (PivOH) in Pd-catalyzed intramolecular oxidative biaryl synthesis, see: B. Liegault, D. Lee, M. P. Huestis, D. R. Stuart, K. Fagnou, J. Org. Chem. 2008, 73, 5022–5028. 18Upon mixing the reagents at room temperature a better solubility of CuII(OAc)2 was observed in the presence of benzoic acids versus acetic acid.[15] 19For application of such conditions to the synthesis of benzoxazoles and benzothiazoles, see: 19aN. Barbero, M. Carril, R. SanMartin, E. Domínguez, Tetrahedron 2007, 63, 10425–10432; 19bJ. H. Spatz, T. Bach, M. Umkkehrer, J. Bardin, G. Ross, C. Burdack, J. Kolb, Tetrahedron Lett. 2007, 48, 9030–9034; 19cG. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802–1808. 20For an intramolecular amination process with stoichiometric CuI salts and iodide or bromide substrates, see: K. Yamada, T. Kubo, H. Tokuyama, T. Fukuyama, Synlett 2002, 0231–0234. 21For amination processes on aryl iodides and bromides with catalytic CuI salts and ligands, see: 21aH.-J. Cristau, P. P. Cellier, J.-F. Spindler, M. Taillefer, Chem. Eur. J. 2004, 10, 5607–5622; 21bA. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727–7729; 21cF. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796; 21dX. Deng, H. McAllister, N. S. Mani, J. Org. Chem. 2009, 74, 5742–5745. 22For a different synthetic route to tetracycle 7, see: C. Venkatesh, G. S. M. Sundaram, H. Ila, H. Junjappa, J. Org. Chem. 2006, 71, 1280–1283. 23KIEs have been observed for Pd-catalyzed intramolecular arylations, see: 23aD. Garcia-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066–1067; 23bD. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880–6886. 24A combination of both inter- and intramolecular KIEs can be significantly more informative than either by itself: E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084–12085. 25For a similar anti-oxy-cupration in meta-selective copper-catalyzed CH bond arylation with Ph2IX as oxidant, see: R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593–1597. 26For an example of β-hydride elimination involving CuII species see: G. Franc, A. Jutand, Dalton Trans. 2010, 39, 7873–7875. 27Recently, our research group showed that in direct functionalization via transition-metal-catalyzed reactions the hydrogen atom in the substrate can be finally lost as H2 gas. H. Prokopcová, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. Van der Veken, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2010, 16, 13063–13067. Raman spectroscopy measurement showed that in the direct aminations studied here, no H2 gas is formed under oxygen free atmosphere (Table 1, entry 24). 28In the Chan–Evans–Lam reaction, CuII acts as a single-electron oxidant: A. E. King, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 5044–5045. 29For kinetic isotope effects in syn β-hydride elimination, see: 29aJ. Evans, J. Schwartz, P. W. Urquhart, J. Organomet. Chem. 1974, 81, C 37-C39; 29bC. J. Jenks, M. Xi, M. X. Yang, B. E. Bent, J. Phys. Chem. 1994, 98, 2152–2157. 30 30aA comparison of kobsd values can only be done for those reactions with a very high selectivity towards the desired reaction product. Otherwise kobsd values do not represent exclusive information on the 3 to 4 transformation. kobsd values were determined for reactions run with 3,4,5-trifluorobenzoic acid as additive. 30bDFT calculations were performed on structures B (Scheme 5), where R=Me. 31H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217–13219. Citing Literature Volume17, Issue23May 27, 2011Pages 6315-6320 ReferencesRelatedInformation