荧光
荧光团
碘化丙啶
吸收(声学)
双光子激发显微术
双光子吸收
激光器
显微镜
发射光谱
材料科学
分析化学(期刊)
化学
光学
谱线
物理
细胞凋亡
生物化学
色谱法
天文
程序性细胞死亡
作者
Felix Bestvater,Eberhard Spieß,G. Stobrawa,Martin Häcker,Thomas Feurer,T. Porwol,Utta Berchner‐Pfannschmidt,Christoph Wotzlaw,H. Acker
标识
DOI:10.1046/j.1365-2818.2002.01074.x
摘要
Summary Two‐photon absorption and emission spectra for fluorophores relevant in cell imaging were measured using a 45 fs Ti:sapphire laser, a continuously tuneable optical parametric amplifier for the excitation range 580–1150 nm and an optical multichannel analyser. The measurements included DNA stains, fluorescent dyes coupled to antibodies as well as organelle trackers, e.g. Alexa and Bodipy dyes, Cy2, Cy3, DAPI, Hoechst 33342, propidium iodide, FITC and rhodamine. In accordance with the two‐photon excitation theory, the majority of the investigated fluorochromes did not reveal significant discrepancies between the two‐photon and the one‐photon emission spectra. However, a blue‐shift of the absorption maxima ranging from a few nanometres up to considerably differing courses of the spectrum was found for most fluorochromes. The potential of non‐linear laser scanning fluorescence microscopy is demonstrated here by visualizing multiple intracellular structures in living cells. Combined with 3D reconstruction techniques, this approach gives a deeper insight into the spatial relationships of subcellular organelles.
科研通智能强力驱动
Strongly Powered by AbleSci AI