Utility-Based Link Recommendation for Online Social Networks

计算机科学 推荐系统 联动装置(软件) 贝叶斯网络 社交网络(社会语言学) 收入 链接(几何体) 钥匙(锁) 链路分析 光学(聚焦) 情报检索 社会化媒体 数据挖掘 数据科学 万维网 机器学习 计算机网络 业务 计算机安全 会计 化学 物理 光学 基因 生物化学
作者
Zhepeng Li,Xiao Fang,Xue Bai,Olivia R. Liu Sheng
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:63 (6): 1938-1952 被引量:63
标识
DOI:10.1287/mnsc.2016.2446
摘要

Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include “People You May Know” on Facebook and LinkedIn as well as “You May Know” on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem—the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods that focus solely on linkage likelihood. Specifically, our method models the dependency relationship between the value, cost, linkage likelihood, and utility-based link recommendation decision using a Bayesian network; predicts the probability of recommending a link with the Bayesian network; and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared with prevalent link recommendation methods from representative prior research. This paper was accepted by Anandhi Bharadwaj, information systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吃惊橘子应助坚强的严青采纳,获得10
1秒前
2秒前
qi完成签到,获得积分10
3秒前
奈克罗普陀西斯完成签到,获得积分10
3秒前
4秒前
高越完成签到,获得积分20
4秒前
卯兔发布了新的文献求助20
4秒前
Zhangll完成签到,获得积分10
5秒前
无花果应助长情的初瑶采纳,获得10
5秒前
tong童发布了新的文献求助10
6秒前
fanligang发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
小蘑菇应助chx123采纳,获得10
10秒前
www发布了新的文献求助10
11秒前
李健应助lee采纳,获得10
11秒前
linnan发布了新的文献求助10
12秒前
sherry发布了新的文献求助10
12秒前
hehe23he完成签到,获得积分10
13秒前
13秒前
jor666完成签到 ,获得积分10
15秒前
hehe23he发布了新的文献求助10
16秒前
十一月的阴天完成签到 ,获得积分10
16秒前
fanligang完成签到,获得积分10
17秒前
17秒前
18秒前
俭朴的莹完成签到,获得积分20
20秒前
lee完成签到,获得积分10
21秒前
蝴蝶完成签到 ,获得积分10
21秒前
情怀应助天才小熊猫采纳,获得10
21秒前
hoonci完成签到,获得积分10
22秒前
ethely发布了新的文献求助10
22秒前
人间烟火完成签到,获得积分10
25秒前
chx123发布了新的文献求助10
25秒前
cx330完成签到 ,获得积分10
26秒前
Akim应助青岚采纳,获得10
26秒前
poki发布了新的文献求助30
27秒前
Frank应助MARKTTE采纳,获得1000
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233861
求助须知:如何正确求助?哪些是违规求助? 2880343
关于积分的说明 8214733
捐赠科研通 2547792
什么是DOI,文献DOI怎么找? 1377216
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623213