数学
黑森矩阵
班级(哲学)
非线性规划
可分离空间
序列(生物学)
数学优化
内点法
卡鲁什-库恩-塔克条件
凸优化
凸性
半无限规划
可行区
应用数学
正多边形
非线性系统
数学分析
几何学
人工智能
计算机科学
物理
量子力学
生物
金融经济学
经济
遗传学
出处
期刊:Siam Journal on Optimization
[Society for Industrial and Applied Mathematics]
日期:2002-01-01
卷期号:12 (2): 555-573
被引量:1172
标识
DOI:10.1137/s1052623499362822
摘要
This paper deals with a certain class of optimization methods, based on conservative convex separable approximations (CCSA), for solving inequality-constrained nonlinear programming problems. Each generated iteration point is a feasible solution with lower objective value than the previous one, and it is proved that the sequence of iteration points converges toward the set of Karush--Kuhn--Tucker points. A major advantage of CCSA methods is that they can be applied to problems with a very large number of variables (say 104--105) even if the Hessian matrices of the objective and constraint functions are dense.
科研通智能强力驱动
Strongly Powered by AbleSci AI