普遍性(动力系统)
分子
量子化学
计算机科学
理论(学习稳定性)
统计物理学
纳米技术
材料科学
机器学习
化学
物理
有机化学
量子力学
作者
Albert P. Bartók,Sandip De,Carl Poelking,Noam Bernstein,James R. Kermode,Gábor Cśanyi,Michele Ceriotti
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2017-12-01
卷期号:3 (12)
被引量:592
标识
DOI:10.1126/sciadv.1701816
摘要
Determining the stability of molecules and condensed phases is the cornerstone of atomistic modeling, underpinning our understanding of chemical and materials properties and transformations. We show that a machine-learning model, based on a local description of chemical environments and Bayesian statistical learning, provides a unified framework to predict atomic-scale properties. It captures the quantum mechanical effects governing the complex surface reconstructions of silicon, predicts the stability of different classes of molecules with chemical accuracy, and distinguishes active and inactive protein ligands with more than 99% reliability. The universality and the systematic nature of our framework provide new insight into the potential energy surface of materials and molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI