PEST-ORCHESTRA, a tool for optimising advanced ion-binding model parameters: derivation of NICA-Donnan model parameters for humic substances reactivity

质子化 化学 生物系统 离子强度 离子键合 遗传算法 离子 生态学 物理化学 水溶液 有机化学 生物
作者
Noémie Janot,José Paulo Pinheiro,Wander Gustavo Botero,J.C.L. Meeussen,J.E. Groenenberg
出处
期刊:Environmental Chemistry [CSIRO Publishing]
卷期号:14 (1): 31-31 被引量:17
标识
DOI:10.1071/en16039
摘要

Environmental contextThe environmental behaviour of trace metals in soils and waters largely depends on the chemical form (speciation) of the metals. Speciation software programs combining models for the binding of metals to soil and sediment constituents are powerful tools in environmental risk assessment. This paper describes a new combination of speciation software with a fitting program to optimise geochemical model parameters that describes proton and metal binding to humic substances. AbstractHere we describe the coupling of the chemical speciation software ORCHESTRA with the parameter estimation software PEST. This combination enables the computation of optimised model parameters from experimental data for the ion binding models implemented in ORCHESTRA. For testing this flexible tool, the NICA-Donnan model parameters for proton-, Cd- and Zn-binding to Laurentian fulvic acid were optimised. The extensive description of the method implementation and the examples provided facilitate the use of this tool by students and researchers. Three procedures were compared which derive the proton binding parameters, differing in the way they constrain the model parameters and in the implementation of the electrostatic Donnan model. Although the different procedures resulted in significantly different sets of model parameters, the experimental data fit obtained was of similar quality. The choice of the relation between the Donnan volume and the ionic strength appears to have a strong influence on the derived set of optimal model parameters, especially on the values of the protonation constants, as well as on the Donnan potential and Donnan volume. Optimised results are discussed in terms of their physico-chemical plausibility. Coherent sets of NICA-Donnan parameters were derived for Cd and Zn binding to Laurentian fulvic acid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Accept完成签到,获得积分10
刚刚
xixilulixiu发布了新的文献求助10
刚刚
浮名半生完成签到,获得积分10
1秒前
dypdyp应助飞云采纳,获得10
1秒前
Melan完成签到,获得积分10
1秒前
2秒前
活泼平凡完成签到,获得积分10
2秒前
嗯,你说得对完成签到,获得积分10
2秒前
大知闲闲完成签到,获得积分10
3秒前
3秒前
阳佟半仙完成签到,获得积分10
3秒前
ytxstrawberry完成签到,获得积分10
3秒前
wopdimap发布了新的文献求助20
3秒前
年轻的青柏完成签到,获得积分10
4秒前
星辰大海应助芯子采纳,获得10
4秒前
温柔以冬完成签到,获得积分10
4秒前
开心果大王发布了新的文献求助500
4秒前
5秒前
cpli发布了新的文献求助30
5秒前
5秒前
chang完成签到,获得积分20
5秒前
EthanChan完成签到,获得积分10
5秒前
窦慕卉完成签到,获得积分10
6秒前
6秒前
善学以致用应助段一帆采纳,获得10
7秒前
7秒前
白白的珠珠完成签到,获得积分10
7秒前
愉快幻悲完成签到,获得积分10
7秒前
虚幻人完成签到,获得积分10
7秒前
哦豁完成签到,获得积分10
7秒前
有魅力的从凝完成签到,获得积分10
7秒前
乐此不疲发布了新的文献求助10
8秒前
自觉石头完成签到 ,获得积分10
8秒前
伯赏松思完成签到,获得积分10
8秒前
dzjin完成签到,获得积分10
8秒前
明亮大叔发布了新的文献求助10
9秒前
CART汪发布了新的文献求助10
9秒前
勤劳的老九应助12334采纳,获得10
9秒前
一颗橙子完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968844
求助须知:如何正确求助?哪些是违规求助? 3513769
关于积分的说明 11169920
捐赠科研通 3249095
什么是DOI,文献DOI怎么找? 1794630
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755