亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

辐射传输 有机太阳能电池 富勒烯 光伏系统 开路电压 光电子学 能量转换效率 电压 带隙 材料科学 太阳能电池效率 电子 量子效率 太阳能电池 自发辐射 原子物理学 光学 物理 电气工程 工程类 量子力学 激光器
作者
Johannes Benduhn,Kristofer Tvingstedt,Fortunato Piersimoni,Sascha Ullbrich,Yeli Fan,Manuel Tropiano,Kathryn A. McGarry,Olaf Zeika,Moritz Riede,Christopher J. Douglas,Stephen Barlow,Seth R. Marder,Dieter Neher,Donato Spoltore,Koen Vandewal
出处
期刊:Nature Energy [Nature Portfolio]
卷期号:2 (6) 被引量:603
标识
DOI:10.1038/nenergy.2017.53
摘要

Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45–1.65 eV, that is, 0.2–0.3 eV higher than for technologies with minimized non-radiative voltage losses. The conversion efficiency of organic solar cells suffers from their low open-circuit voltages. Here, the authors expose a link between electron-vibrations coupling and non-radiative recombinations, derive a new limit for the efficiency of organic solar cells, and redefine their optimal optical gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
1秒前
量子星尘发布了新的文献求助10
5秒前
追三完成签到 ,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助50
18秒前
18秒前
风中子轩完成签到,获得积分10
19秒前
24秒前
量子星尘发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
36秒前
40秒前
量子星尘发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
52秒前
55秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
温柔涵山完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
超男完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188