A Survey of Spectral Analysis

统计 数学 环境科学
作者
G. M. Jenkins
出处
期刊:Applied statistics [Wiley]
卷期号:14 (1): 2-2 被引量:25
标识
DOI:10.2307/2985352
摘要

A wide variety of applications of spectral analysis have been reported in the literature since spectral estimation methods were introduced by M. S. Bartlett and J. W. Tukey about 15 years ago. In no sense, however, can it be said that spectral analysis is widely used or even understood by statisticians and many of the applications of the technique have in fact been made by physicists and engineers. It is suggested that there are two reasons for this: (1) The genuine difficulties which statisticians (as opposed to physicists and engineers) face in thinking in terms of frequency concepts. (2) The highly mathematical nature of papers written on spectral analysis. This undue emphasis on mathematical work has led many statisticians to believe that spectral analysis is very difficult to apply. This is not the case-in fact the important ideas in spectral analysis are no more difficult than those involved in estimating a probability density function by means of a histogram. In this paper we shall try to present, using the minimum of mathematics, all those ideas in spectral analysis which are necessary in order to be able to apply the technique. In the last resort the only way to understand spectral analysis is to use it and so where possible the main ideas have been illustrated by means of examples. Two forms of spectral analysis are discussed in detail, namely, (1) spectral analysis of a single time-series to be referred to as auto-spectra; (2) spectral analysis of pairs of time-series to be referred to as crossspectra. However other forms of spectral analysis are mentioned briefly in section 7. Cross-spectral analysis is useful in two contexts:
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
行宇发布了新的文献求助10
5秒前
大个应助力口氵由采纳,获得10
5秒前
Agoni发布了新的文献求助10
5秒前
chen完成签到,获得积分20
7秒前
刘欢发布了新的文献求助10
8秒前
hcj发布了新的文献求助20
8秒前
aman完成签到 ,获得积分10
8秒前
9秒前
在水一方应助执着夏山采纳,获得10
9秒前
Lucas应助zhaobiao采纳,获得10
9秒前
12秒前
chen发布了新的文献求助10
12秒前
小马甲应助journey_qq采纳,获得10
13秒前
13秒前
行宇完成签到,获得积分10
14秒前
力口氵由完成签到,获得积分10
15秒前
15秒前
CC完成签到,获得积分10
15秒前
16秒前
科研通AI2S应助pizi采纳,获得30
16秒前
积极涛完成签到,获得积分10
16秒前
16秒前
mmmm应助nushell采纳,获得10
16秒前
16秒前
所所应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
新青年应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得30
17秒前
18秒前
李啦啦关注了科研通微信公众号
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905