计算机科学
稳健性(进化)
人工智能
回归
回归分析
基本事实
估计
噪音(视频)
人工神经网络
模式识别(心理学)
心率变异性
机器学习
心率
统计
数学
医学
工程类
血压
生物化学
化学
系统工程
放射科
图像(数学)
基因
作者
Changzhe Jiao,Chao Chen,Shuiping Gou,Dong Hai,Bo-Yu Su,Marjorie Skubic,Licheng Jiao,Alina Zare,K. C. Ho
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2021-05-04
卷期号:25 (9): 3396-3407
被引量:12
标识
DOI:10.1109/jbhi.2021.3077002
摘要
Non-invasive heart rate estimation is of great importance in daily monitoring of cardiovascular diseases. In this paper, a bidirectional long short term memory (bi-LSTM) regression network is developed for non-invasive heart rate estimation from the ballistocardiograms (BCG) signals. The proposed deep regression model provides an effective solution to the existing challenges in BCG heart rate estimation, such as the mismatch between the BCG signals and ground-truth reference, multi-sensor fusion and effective time series feature learning. Allowing label uncertainty in the estimation can reduce the manual cost of data annotation while further improving the heart rate estimation performance. Compared with the state-of-the-art BCG heart rate estimation methods, the strong fitting and generalization ability of the proposed deep regression model maintains better robustness to noise ( e.g. , sensor noise) and perturbations ( e.g. , body movements) in the BCG signals and provides a more reliable solution for long term heart rate monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI