Synthesis of paracrystalline diamond

副晶态 钻石 无定形固体 成核 材料科学 纳米 化学物理 金刚石立方 结晶学 纳米技术 无定形碳 化学 复合材料 有机化学
作者
Hu Tang,Xiaofang Yuan,Yong Cheng,Hongzhan Fei,Fuyang Liu,Tao Liang,Zhidan Zeng,Takayuki Ishii,Ming‐Sheng Wang,Tomoo Katsura,H. W. Sheng,Huiyang Gou
出处
期刊:Nature [Springer Nature]
卷期号:599 (7886): 605-610 被引量:90
标识
DOI:10.1038/s41586-021-04122-w
摘要

Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz0429发布了新的文献求助10
刚刚
NexusExplorer应助chen采纳,获得10
1秒前
1秒前
1秒前
秋殇浅寞完成签到,获得积分10
1秒前
Booiys完成签到,获得积分10
1秒前
1秒前
情红锐完成签到,获得积分10
2秒前
科研小肖发布了新的文献求助20
2秒前
祭礼之龙完成签到,获得积分10
2秒前
2秒前
LCC完成签到 ,获得积分10
2秒前
3秒前
yanxueyi完成签到 ,获得积分10
3秒前
bkagyin应助always采纳,获得10
3秒前
byq发布了新的文献求助10
5秒前
Amuro完成签到,获得积分10
5秒前
DD发布了新的文献求助10
5秒前
ddd发布了新的文献求助150
6秒前
DDD发布了新的文献求助10
6秒前
chen完成签到,获得积分10
7秒前
年轻电源完成签到,获得积分10
7秒前
7秒前
逃学威龙应助阳光棉花糖采纳,获得10
9秒前
han完成签到,获得积分20
10秒前
羡羡呀完成签到 ,获得积分10
10秒前
小杜应助干净的小鸭子采纳,获得10
10秒前
马文杰完成签到 ,获得积分10
10秒前
10秒前
孤独的AD钙完成签到,获得积分10
11秒前
包容翰完成签到,获得积分20
12秒前
受伤哈密瓜完成签到 ,获得积分10
12秒前
12秒前
生动的半山完成签到,获得积分10
12秒前
超帅柚子发布了新的文献求助10
13秒前
lcc完成签到 ,获得积分10
13秒前
13秒前
高大的莞完成签到 ,获得积分10
14秒前
逍遥完成签到,获得积分10
14秒前
vv发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903