Longitudinal evaluation for COVID‐19 chest CT disease progression based on Tchebichef moments

人工智能 计算机科学 分割 图像配准 模式识别(心理学) 计算机视觉 2019年冠状病毒病(COVID-19) 感兴趣区域 数学 图像(数学) 医学 疾病 病理 传染病(医学专业)
作者
Lu Tang,Chao Tian,Yankai Meng,Kai Xu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:31 (3): 1120-1127 被引量:5
标识
DOI:10.1002/ima.22583
摘要

Blur is a key property in the perception of COVID-19 computed tomography (CT) image manifestations. Typically, blur causes edge extension, which brings shape changes in infection regions. Tchebichef moments (TM) have been verified efficiently in shape representation. Intuitively, disease progression of same patient over time during the treatment is represented as different blur degrees of infection regions, since different blur degrees cause the magnitudes change of TM on infection regions image, blur of infection regions can be captured by TM. With the above observation, a longitudinal objective quantitative evaluation method for COVID-19 disease progression based on TM is proposed. COVID-19 disease progression CT image database (COVID-19 DPID) is built to employ radiologist subjective ratings and manual contouring, which can test and compare disease progression on the CT images acquired from the same patient over time. Then the images are preprocessed, including lung automatic segmentation, longitudinal registration, slice fusion, and a fused slice image with region of interest (ROI) is obtained. Next, the gradient of a fused ROI image is calculated to represent the shape. The gradient image of fused ROI is separated into same size blocks, a block energy is calculated as quadratic sum of non-direct current moment values. Finally, the objective assessment score is obtained by TM energy-normalized applying block variances. We have conducted experiment on COVID-19 DPID and the experiment results indicate that our proposed metric supplies a satisfactory correlation with subjective evaluation scores, demonstrating effectiveness in the quantitative evaluation for COVID-19 disease progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AoAoo完成签到,获得积分10
1秒前
王壮壮完成签到,获得积分10
1秒前
snail01完成签到,获得积分10
2秒前
bio生物发布了新的文献求助10
2秒前
Orange应助积极万声采纳,获得10
2秒前
4秒前
6秒前
6秒前
6秒前
隐形曼青应助zjh采纳,获得10
6秒前
suy发布了新的文献求助10
7秒前
8秒前
10秒前
程瑞哲发布了新的文献求助80
10秒前
12秒前
smy发布了新的文献求助10
12秒前
唯美完成签到,获得积分10
12秒前
12秒前
12秒前
顾矜应助食野之苹采纳,获得10
12秒前
小蘑菇应助苒苒采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
美好储发布了新的文献求助10
13秒前
suy完成签到,获得积分10
14秒前
赘婿应助时尚的开山采纳,获得10
15秒前
15秒前
852应助cm采纳,获得10
16秒前
山楂发布了新的文献求助10
17秒前
向晚完成签到 ,获得积分10
19秒前
zzz362完成签到,获得积分10
21秒前
22秒前
Owen应助春风不语采纳,获得10
23秒前
28秒前
zzz发布了新的文献求助10
28秒前
Slemon完成签到,获得积分10
29秒前
30秒前
CodeCraft应助侯元正采纳,获得30
30秒前
桃博完成签到,获得积分10
32秒前
共享精神应助玉米侠采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869564
求助须知:如何正确求助?哪些是违规求助? 6453599
关于积分的说明 15661432
捐赠科研通 4985461
什么是DOI,文献DOI怎么找? 2688396
邀请新用户注册赠送积分活动 1630824
关于科研通互助平台的介绍 1588937