亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonlaboratory-Based Risk Assessment Model For Type 2 Diabetes Mellitus Screening in Chinese Rural Population: A Joint Bagging-Boosting Model

Boosting(机器学习) 计算机科学 布里氏评分 机器学习 人口 数据挖掘 人工智能 医学 统计 环境卫生 数学
作者
Liying Zhang,Yikang Wang,Miaomiao Niu,Chongjian Wang,Zhenfei Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 4005-4016 被引量:19
标识
DOI:10.1109/jbhi.2021.3077114
摘要

Diabetes mellitus is one of the major public health problems in the world due to its high prevalence and medical costs. The prevention effort necessitates reliable risk assessment models which can effectively identify high-risk individuals and enable healthcare practitioners to initiate appropriate preventive interventions. However, diabetes risk assessment models based on data analysis face multiple challenges, such as class imbalance and low identification rate. To cope with these challenges, this paper proposed an analytical framework based on data-driven approaches using large population data from the Henan Rural Cohort Study. A joint bagging-boosting model (JBM) was developed and validated. For the convenience of large-scale population screening, our study excluded laboratory variables and collinearity variables using the maximum likelihood ratio method to obtain accessibility variables. Then, we explored the effects of different methods for dealing with the unbalanced nature of the available data, including over-sampling and under-sampling methods. Finally, to improve the overall model performance, a joint model which combined the bagging and boosting algorithms with the stacking algorithm was constructed. The model we built demonstrated good discrimination, with an area under the curve (AUC) value of 0.885, and acceptable calibration (Brier score = 0.072). Compared with the benchmark model, the proposed framework improved the AUC value of the overall model performance by 13.5%, and the recall increased from 0.744 to 0.847. The proposed model contributes to the personalized management of diabetes, especially in medical resource-poor settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanboyz完成签到 ,获得积分10
40秒前
41秒前
minimini发布了新的文献求助10
45秒前
丘比特应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
小周完成签到 ,获得积分10
52秒前
zsmj23完成签到 ,获得积分0
59秒前
cdutyu完成签到 ,获得积分10
1分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
ding应助璀璨的饺子采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
张可完成签到 ,获得积分10
4分钟前
拣尽南枝完成签到 ,获得积分10
5分钟前
南枝完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
EnoshH完成签到,获得积分10
6分钟前
零度完成签到 ,获得积分10
7分钟前
Akim应助璀璨的饺子采纳,获得10
7分钟前
7分钟前
冬去春来完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
三点水发布了新的文献求助10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
yu发布了新的文献求助10
8分钟前
Hello应助三点水采纳,获得10
8分钟前
kumo完成签到 ,获得积分10
9分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422896
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903946
捐赠科研通 2710687
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330