DFT Study on Regulating the Electronic Structure and CO2 Reduction Reaction in BiOBr/Sulphur-Doped G-C3N4 S-Scheme Heterojunctions

异质结 兴奋剂 密度泛函理论 光催化 材料科学 电场 吸收(声学) 石墨氮化碳 还原(数学) 光电子学 可见光谱 纳米技术 带隙 化学工程 半导体 化学 催化作用 计算化学 物理 复合材料 有机化学 几何学 量子力学 数学
作者
Xingang Fei,Liuyang Zhang,Jiaguo Yu,Bicheng Zhu
出处
期刊:Frontiers in nanotechnology [Frontiers Media]
卷期号:3 被引量:27
标识
DOI:10.3389/fnano.2021.698351
摘要

Photocatalytic CO 2 reduction is a promising method to mitigate the greenhouse effect and energy shortage problem. Development of effective photocatalysts is vital in achieving high photocatalytic activity. Herein, the S-scheme heterojunctions composed by BiOBr and g-C 3 N 4 with or without S doping are thoroughly investigated for CO 2 reduction by density functional theory (DFT) calculation. Work function and charge density difference demonstrate the existence of a built-in electric field in the system, which contributes to the separation of photogenerated electron-hole pairs. Enhanced strength of a built-in electric field is revealed by analysis of Bader charge and electric field intensity. The results indicate that S doping can tailor the electronic structures and thus improve the photocatalytic activity. According to the change in absorption coefficient, system doping can also endow the heterojunction with increased visible light absorption. The in-depth investigation indicates that the superior CO 2 reduction activity is ascribed to low rate-determining energy. And both of the heterojunctions are inclined to generate CH 3 OH rather than CH 4 . Furthermore, S doping can further reduce the energy from 1.23 to 0.44 eV, indicating S doping is predicted to be an efficient photocatalyst for reducing CO 2 into CH 3 OH. Therefore, this paper provides a theoretical basis for designing appropriate catalysts through element doping and heterojunction construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好了完成签到,获得积分10
刚刚
奋斗的老牛完成签到,获得积分10
1秒前
1秒前
土豆完成签到,获得积分20
3秒前
3秒前
Sunrising完成签到,获得积分10
3秒前
zhouqy8完成签到,获得积分10
4秒前
4秒前
TOUHOUU完成签到 ,获得积分10
5秒前
一只橙子完成签到,获得积分10
5秒前
星辰大海应助聪聪great采纳,获得10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
6秒前
Coral发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
hgc完成签到,获得积分10
8秒前
aixx发布了新的文献求助10
8秒前
9秒前
yyj发布了新的文献求助10
9秒前
9秒前
聪聪great完成签到,获得积分10
10秒前
科研通AI5应助清脆遥采纳,获得10
10秒前
傲娇的睫毛膏完成签到 ,获得积分10
11秒前
雪雪完成签到 ,获得积分10
11秒前
CipherSage应助LL爱读书采纳,获得10
12秒前
12秒前
12秒前
BBQye发布了新的文献求助10
12秒前
13秒前
来日可期完成签到,获得积分10
13秒前
早安完成签到,获得积分10
13秒前
CodeCraft应助baocq采纳,获得10
14秒前
14秒前
14秒前
ding应助不解歌采纳,获得10
15秒前
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234