Sensitive H2 gas sensors based on SnO2 nanowires

纳米线 材料科学 纳米技术 退火(玻璃) 兴奋剂 纳米结构 半导体 多孔性 吸附 化学工程 光电子学 化学 复合材料 工程类 有机化学
作者
Sihang Lu,Yuzhu Zhang,Jing-yao Liu,Hua‐Yao Li,Zhixiang Hu,Luo Xie,Naibo Gao,Bao Zhang,Jianjun Jiang,Aihua Zhong,Jingting Luo,Huan Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:345: 130334-130334 被引量:106
标识
DOI:10.1016/j.snb.2021.130334
摘要

Sensitive H2 gas sensors are highly desirable for the prediction and early-warning of H2 leakage. Low-dimensional nanostructures of metal oxide semiconductor emerge as promising materials candidates, but it remains a challenge to preserve the nanostructures in the real sensors. In this work, we demonstrated highly sensitive H2 gas sensors based on porous network of SnO2 nanowires that exhibited ultrasmall diameter ∼ 2 nm. Colloidal SnO2 nanowires synthesized via a solvothermal process were drop-coated onto the commercial alumina substrates, followed by in-situ annealing treatment at 350 °C to remove the surface ligands. The sensors exhibited sensitive response with linear dependence on the H2 gas concentration ranging from 2 ppm to 100 ppm when operated at 250 °C. Typically, the sensor had a response of 13 toward 40 ppm of H2, with the response and recovery time being 15 s and 31 s, respectively. To further improve the sensor performance, Palladium doped SnO2 nanowires were thoroughly investigated. It’s shown that, the operating temperature of the sensor decreased from 250 °C to 150 °C after Pd doping, and the response and recovery time decreased to 6 s/3 s. The superb sensitivity was attributed to the enhanced gas reception, electron transport as well as utility factor owing to the network nanostructure of ultrathin SnO2 nanowires and catalytic activity of Pd, according to theoretical calculation and adsorption kinetics studies. Combined with the excellent solution processability, the colloidal SnO2 nanowires are potentially attractive for next-generation gas sensors with lower power consumption and integration with silicon-based substrates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu发布了新的文献求助10
刚刚
1秒前
大模型应助小彭采纳,获得30
1秒前
斯文败类应助涛涛涛采纳,获得10
1秒前
科研通AI5应助糕gao采纳,获得10
2秒前
Orange应助小笼包采纳,获得10
2秒前
3秒前
上官若男应助欣5采纳,获得10
3秒前
4秒前
科研通AI2S应助研友_Z7Xdl8采纳,获得10
4秒前
科研通AI5应助Lynnlovelove采纳,获得30
4秒前
xugege完成签到,获得积分10
4秒前
苹果老三发布了新的文献求助10
4秒前
王先生完成签到 ,获得积分10
5秒前
5秒前
奔跑中的长颈鹿完成签到,获得积分10
5秒前
博弈春秋完成签到,获得积分10
6秒前
6秒前
星星完成签到,获得积分10
6秒前
简单的八宝粥完成签到,获得积分10
7秒前
王文丰完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助20
8秒前
KK完成签到,获得积分10
8秒前
共享精神应助yan采纳,获得10
8秒前
Sissi发布了新的文献求助10
8秒前
云烟成雨完成签到,获得积分10
9秒前
haifenghou完成签到,获得积分10
9秒前
YCW发布了新的文献求助10
9秒前
9秒前
9秒前
涛涛涛给涛涛涛的求助进行了留言
10秒前
10秒前
Hello应助XYYX采纳,获得10
10秒前
Lynnlovelove完成签到,获得积分10
10秒前
gglaoba完成签到,获得积分10
11秒前
慕青应助奔跑中的长颈鹿采纳,获得10
11秒前
Samuel发布了新的文献求助10
11秒前
美满的友菱完成签到,获得积分10
11秒前
11秒前
Cuixiubin发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717548
求助须知:如何正确求助?哪些是违规求助? 3264155
关于积分的说明 9933500
捐赠科研通 2978170
什么是DOI,文献DOI怎么找? 1633189
邀请新用户注册赠送积分活动 775003
科研通“疑难数据库(出版商)”最低求助积分说明 745265