不连续性分类
日光层
太阳风
绝热过程
物理
间断(语言学)
计算物理学
磁层顶
天体物理学
大气科学
等离子体
热力学
量子力学
数学分析
数学
作者
Alexander Vinogradov,A. V. Artemyev,I. Y. Vasko,Vasiliev Alexei,Anatoly Petrukovich
标识
DOI:10.5194/egusphere-egu2020-20301
摘要
<p>According to Helios, Ulysses, New Horizons measurements at a wide range of distances from the Sun, radial evolution of solar wind ion temperature significantly deviates from the adiabatic expansion model:&#160; additional heating of the solar wind plasma is required to describe observational data. Solution of the solar wind heating problem is extremely important both for understanding the structure of the heliosphere and for adequately describing the atmospheres of distant stars. Solar wind magnetic field is turbulent and this turbulence is dominated by numerous small-scale high-amplitude coherent structures &#8211; such as quasi-1D discontinuities. Modern theoretical models predict that quasi-1D discontinuities can play important role in solar wind heating. We collected the statistics of MMS observations of thin quasi-1D discontinuities in the solar wind to reveal their characteristics. Analyzing observational data, we construct the discontinuity model and use it to consider non-adiabatic interaction of ions with solar wind discontinuities. We mainly focus on discontinuity roles in solar wind ion scattering and thermalization. This presentation shows how discontinuity configuration affects the scattering rates.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI