Introducing a probabilistic definition of the target in a robust treatment planning framework.

计算机科学 概率逻辑 人工智能 放射治疗计划
作者
G. Buti,Kevin Souris,Ana Maria Barragan Montero,John Aldo Lee,Edmond Sterpin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (15): 155008-
标识
DOI:10.1088/1361-6560/ac1265
摘要

The target distribution (CTD) has recently been introduced as a promising alternative to the binary clinical target volume (CTV). However, a comprehensive study that considers the CTD, together with geometric treatment uncertainties, was lacking. Because the CTD is inherently a probabilistic concept, this study proposes a fully probabilistic approach that integrates the CTD directly in a robust treatment planning framework. First, the CTD is derived from a reported microscopic tumor infiltration model such that it explicitly features the probability of tumor cell presence in its target definition. Second, two probabilistic robust optimization methods are proposed that evaluate CTD coverage under uncertainty. The first method minimizes the expected-value (EV) over the uncertainty scenarios and the second method minimizes the sum of the expected value and standard deviation (EV-SD), thereby penalizing the spread of the objectives from the mean. Both EV and EV-SD methods introduce the CTD in the objective function by using weighting factors that represent the probability of tumor presence. The probabilistic methods are compared to a conventional worst-case approach that uses the CTV in a worst-case optimization algorithm. To evaluate the treatment plans, a scenario-based evaluation strategy is implemented that combines the effects of microscopic tumor infiltrations with the other geometric uncertainties. The methods are tested for five lung tumor patients, treated with intensity-modulated proton therapy. The results indicate that for the studied patient cases, the probabilistic methods favor the reduction of the esophagus dose but compensate by increasing the high-dose region in a low conflicting organ such as the lung. These results show that a fully probabilistic approach has the potential to obtain clinical benefits when tumor infiltration uncertainties are taken into account directly in the treatment planning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的嚣发布了新的文献求助200
2秒前
量子星尘发布了新的文献求助10
6秒前
yunt完成签到 ,获得积分10
10秒前
Sandy完成签到 ,获得积分10
13秒前
17秒前
灵巧的嚣完成签到,获得积分10
17秒前
keyanxiaobaishu完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
25秒前
sadh2完成签到 ,获得积分10
26秒前
郑旭辉完成签到,获得积分10
27秒前
陈陈完成签到 ,获得积分10
28秒前
王静姝完成签到,获得积分10
31秒前
WB87应助科研通管家采纳,获得10
36秒前
量子星尘发布了新的文献求助10
38秒前
naiyouqiu1989完成签到,获得积分10
44秒前
45秒前
量子星尘发布了新的文献求助10
50秒前
jiuzhege完成签到 ,获得积分10
58秒前
美满的珠完成签到 ,获得积分10
59秒前
zw发布了新的文献求助50
1分钟前
1分钟前
龙王爱吃糖完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
marc107完成签到,获得积分10
1分钟前
1分钟前
温柔樱桃完成签到 ,获得积分10
1分钟前
潘啊潘完成签到 ,获得积分10
1分钟前
缥缈的觅风完成签到 ,获得积分10
1分钟前
HiDasiy完成签到 ,获得积分10
1分钟前
杰_骜不驯完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
feiyang完成签到 ,获得积分10
1分钟前
养花低手完成签到 ,获得积分10
1分钟前
xixihaha完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
btcat完成签到,获得积分0
1分钟前
偶然发现的西柚完成签到 ,获得积分10
1分钟前
ling完成签到 ,获得积分10
1分钟前
zw完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399