Introducing a probabilistic definition of the target in a robust treatment planning framework.

计算机科学 概率逻辑 人工智能 放射治疗计划
作者
G. Buti,Kevin Souris,Ana Maria Barragan Montero,John Aldo Lee,Edmond Sterpin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (15): 155008-
标识
DOI:10.1088/1361-6560/ac1265
摘要

The target distribution (CTD) has recently been introduced as a promising alternative to the binary clinical target volume (CTV). However, a comprehensive study that considers the CTD, together with geometric treatment uncertainties, was lacking. Because the CTD is inherently a probabilistic concept, this study proposes a fully probabilistic approach that integrates the CTD directly in a robust treatment planning framework. First, the CTD is derived from a reported microscopic tumor infiltration model such that it explicitly features the probability of tumor cell presence in its target definition. Second, two probabilistic robust optimization methods are proposed that evaluate CTD coverage under uncertainty. The first method minimizes the expected-value (EV) over the uncertainty scenarios and the second method minimizes the sum of the expected value and standard deviation (EV-SD), thereby penalizing the spread of the objectives from the mean. Both EV and EV-SD methods introduce the CTD in the objective function by using weighting factors that represent the probability of tumor presence. The probabilistic methods are compared to a conventional worst-case approach that uses the CTV in a worst-case optimization algorithm. To evaluate the treatment plans, a scenario-based evaluation strategy is implemented that combines the effects of microscopic tumor infiltrations with the other geometric uncertainties. The methods are tested for five lung tumor patients, treated with intensity-modulated proton therapy. The results indicate that for the studied patient cases, the probabilistic methods favor the reduction of the esophagus dose but compensate by increasing the high-dose region in a low conflicting organ such as the lung. These results show that a fully probabilistic approach has the potential to obtain clinical benefits when tumor infiltration uncertainties are taken into account directly in the treatment planning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的致远完成签到,获得积分10
2秒前
小马甲应助sgjj33采纳,获得10
4秒前
所所应助奋斗灵波采纳,获得10
5秒前
6秒前
慌糖完成签到,获得积分10
7秒前
liu完成签到,获得积分10
9秒前
柔弱凡松发布了新的文献求助10
11秒前
11秒前
13秒前
QQQQ发布了新的文献求助20
13秒前
zy完成签到 ,获得积分10
13秒前
坦率若颜发布了新的文献求助10
17秒前
terence应助YYJ25采纳,获得10
18秒前
20秒前
22秒前
22秒前
JianminLuo完成签到 ,获得积分10
23秒前
慌糖发布了新的文献求助10
23秒前
贪玩语蓉完成签到,获得积分10
24秒前
25秒前
heidi发布了新的文献求助10
26秒前
26秒前
CipherSage应助昵称采纳,获得10
26秒前
所得皆所愿完成签到 ,获得积分10
26秒前
英俊的铭应助浙江嘉兴采纳,获得10
28秒前
caoyy发布了新的文献求助10
29秒前
31秒前
花陵完成签到 ,获得积分10
31秒前
田様应助youjiang采纳,获得10
31秒前
lixm发布了新的文献求助10
32秒前
33秒前
春眠不觉小小酥完成签到,获得积分10
34秒前
34秒前
34秒前
JerryZ发布了新的文献求助10
35秒前
35秒前
wewe发布了新的文献求助30
38秒前
昵称发布了新的文献求助10
38秒前
39秒前
hdd完成签到,获得积分10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851