已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Introducing a probabilistic definition of the target in a robust treatment planning framework.

计算机科学 概率逻辑 人工智能 放射治疗计划
作者
G. Buti,Kevin Souris,Ana Maria Barragan Montero,John Aldo Lee,Edmond Sterpin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (15): 155008-
标识
DOI:10.1088/1361-6560/ac1265
摘要

The target distribution (CTD) has recently been introduced as a promising alternative to the binary clinical target volume (CTV). However, a comprehensive study that considers the CTD, together with geometric treatment uncertainties, was lacking. Because the CTD is inherently a probabilistic concept, this study proposes a fully probabilistic approach that integrates the CTD directly in a robust treatment planning framework. First, the CTD is derived from a reported microscopic tumor infiltration model such that it explicitly features the probability of tumor cell presence in its target definition. Second, two probabilistic robust optimization methods are proposed that evaluate CTD coverage under uncertainty. The first method minimizes the expected-value (EV) over the uncertainty scenarios and the second method minimizes the sum of the expected value and standard deviation (EV-SD), thereby penalizing the spread of the objectives from the mean. Both EV and EV-SD methods introduce the CTD in the objective function by using weighting factors that represent the probability of tumor presence. The probabilistic methods are compared to a conventional worst-case approach that uses the CTV in a worst-case optimization algorithm. To evaluate the treatment plans, a scenario-based evaluation strategy is implemented that combines the effects of microscopic tumor infiltrations with the other geometric uncertainties. The methods are tested for five lung tumor patients, treated with intensity-modulated proton therapy. The results indicate that for the studied patient cases, the probabilistic methods favor the reduction of the esophagus dose but compensate by increasing the high-dose region in a low conflicting organ such as the lung. These results show that a fully probabilistic approach has the potential to obtain clinical benefits when tumor infiltration uncertainties are taken into account directly in the treatment planning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿牛奶发布了新的文献求助10
3秒前
银杏叶完成签到 ,获得积分10
4秒前
后陡门爱神完成签到 ,获得积分10
4秒前
LynSharonRose完成签到,获得积分10
5秒前
2220完成签到 ,获得积分10
6秒前
shc发布了新的文献求助10
6秒前
小酒很努力吖完成签到 ,获得积分10
10秒前
天真之桃发布了新的文献求助10
11秒前
Akim应助阿牛奶采纳,获得10
11秒前
燊yy发布了新的文献求助30
11秒前
13秒前
Odile完成签到 ,获得积分10
14秒前
guard发布了新的文献求助30
18秒前
天真之桃完成签到,获得积分10
23秒前
帅气的沧海完成签到 ,获得积分10
23秒前
胡图图完成签到,获得积分20
26秒前
29秒前
在水一方应助胡图图采纳,获得10
30秒前
30秒前
superfatcat完成签到,获得积分10
33秒前
34秒前
杰仔发布了新的文献求助10
36秒前
Fn完成签到 ,获得积分10
39秒前
40秒前
42秒前
耶斯完成签到,获得积分10
43秒前
清风浮云完成签到,获得积分10
43秒前
胡图图发布了新的文献求助10
44秒前
Chenly完成签到,获得积分10
45秒前
无情的mm完成签到 ,获得积分10
46秒前
月流雨完成签到,获得积分10
47秒前
耶斯发布了新的文献求助10
47秒前
愉快若剑发布了新的文献求助10
47秒前
wenhuanwenxian完成签到 ,获得积分10
48秒前
君临天下完成签到,获得积分10
52秒前
小粒橙完成签到 ,获得积分10
56秒前
阿钉完成签到 ,获得积分10
56秒前
花草般的清香完成签到,获得积分20
57秒前
杨旭完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154769
求助须知:如何正确求助?哪些是违规求助? 2805639
关于积分的说明 7865397
捐赠科研通 2463783
什么是DOI,文献DOI怎么找? 1311600
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832