Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle.

再生(生物学) 活性炭 碳纤维 化学 环境化学
作者
Busra Sonmez Baghirzade,Yi Zhang,James F. Reuther,Navid B. Saleh,Arjun K. Venkatesan,Onur G. Apul
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (9): 5608-5619 被引量:7
标识
DOI:10.1021/acs.est.0c08224
摘要

Extensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e., PFAS-laden GAC. Considering the recalcitrance of PFAS molecules in the environment, inadequate disposal (e.g., landfill or incineration) of PFAS-laden GAC may let PFAS back into the aquatic cycle. Therefore, developing approaches for PFAS-laden GAC management present unique opportunities to break its forever circulation within the aqueous environment. This comprehensive review evaluates the past two decades of research on conventional thermal regeneration of GAC and critically analyzes and summarizes the literature on regeneration of PFAS-laden GACs. Optimized thermal regeneration of PFAS-laden GACs may provide an opportunity to employ existing regeneration infrastructure to mineralize the adsorbed PFAS and recover the spent GAC. The specific objectives of this review are (i) to investigate the role of physicochemical properties of PFAS on thermal regeneration, (ii) to assess the changes in regeneration yield as well as GAC physical and chemical structure upon thermal regeneration, and (iii) to critically discuss regeneration parameters controlling the process. This literature review on the engineered regeneration process illustrates the significant promise of this approach that can break the endless environmental cycle of these forever chemicals, while preserving the desired physicochemical properties of the valuable GAC adsorbent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xx完成签到,获得积分20
2秒前
千听听完成签到,获得积分10
2秒前
景清发布了新的文献求助10
3秒前
3秒前
4秒前
刘刘刘发布了新的文献求助10
4秒前
LHL发布了新的文献求助10
4秒前
Gmhoo_发布了新的文献求助10
4秒前
大模型应助Amorino采纳,获得10
5秒前
莉亚发布了新的文献求助10
5秒前
5秒前
自觉的幼珊完成签到,获得积分20
5秒前
追风者完成签到 ,获得积分10
5秒前
duoduo应助抓到你啦采纳,获得10
6秒前
WLY发布了新的文献求助10
6秒前
小明发布了新的文献求助10
7秒前
okko完成签到,获得积分10
7秒前
李健的小迷弟应助摆烂昊采纳,获得10
8秒前
开朗的香水蘑菇完成签到,获得积分10
8秒前
8秒前
XuziZhang完成签到,获得积分10
10秒前
小田完成签到 ,获得积分10
11秒前
江姜酱先生完成签到,获得积分10
13秒前
星辰大海应助薛冰雪采纳,获得10
14秒前
鹿行川完成签到,获得积分10
14秒前
wbb完成签到 ,获得积分10
15秒前
15秒前
16秒前
LHL完成签到,获得积分10
16秒前
luoshikun发布了新的文献求助10
16秒前
自信枫叶完成签到,获得积分20
17秒前
慕雅青完成签到,获得积分10
18秒前
小新完成签到 ,获得积分10
18秒前
毛豆应助唐煜城采纳,获得10
18秒前
18秒前
19秒前
酷酷的又亦关注了科研通微信公众号
19秒前
CipherSage应助瑶瑶乐采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312864
求助须知:如何正确求助?哪些是违规求助? 2945309
关于积分的说明 8524240
捐赠科研通 2621078
什么是DOI,文献DOI怎么找? 1433284
科研通“疑难数据库(出版商)”最低求助积分说明 664932
邀请新用户注册赠送积分活动 650302