Self-supervised monocular depth estimation from oblique UAV videos

人工智能 计算机科学 计算机视觉 单眼 深度学习 卷积神经网络 摄影测量学 深度图 图像(数学)
作者
Logambal Madhuanand,Francesco Nex,Michael Ying Yang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:176: 1-14 被引量:28
标识
DOI:10.1016/j.isprsjprs.2021.03.024
摘要

Unmanned Aerial Vehicles (UAVs) have become an essential photogrammetric measurement as they are affordable, easily accessible and versatile. Aerial images captured from UAVs have applications in small and large scale texture mapping, 3D modelling, object detection tasks, Digital Terrain Model (DTM) and Digital Surface Model (DSM) generation etc. Photogrammetric techniques are routinely used for 3D reconstruction from UAV images where multiple images of the same scene are acquired. Developments in computer vision and deep learning techniques have made Single Image Depth Estimation (SIDE) a field of intense research. Using SIDE techniques on UAV images can overcome the need for multiple images for 3D reconstruction. This paper aims to estimate depth from a single UAV aerial image using deep learning. We follow a self-supervised learning approach, Self-Supervised Monocular Depth Estimation (SMDE), which does not need ground truth depth or any extra information other than images for learning to estimate depth. Monocular video frames are used for training the deep learning model which learns depth and pose information jointly through two different networks, one each for depth and pose. The predicted depth and pose are used to reconstruct one image from the viewpoint of another image utilising the temporal information from videos. We propose a novel architecture with two 2D Convolutional Neural Network (CNN) encoders and a 3D CNN decoder for extracting information from consecutive temporal frames. A contrastive loss term is introduced for improving the quality of image generation. Our experiments are carried out on the public UAVid video dataset. The experimental results demonstrate that our model outperforms the state-of-the-art methods in estimating the depths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mariawang采纳,获得10
刚刚
刚刚
清秀灵薇完成签到,获得积分10
刚刚
满天星完成签到 ,获得积分20
刚刚
Gdhdjxbbx发布了新的文献求助10
1秒前
黄新绒完成签到 ,获得积分10
1秒前
2秒前
完美世界应助31313采纳,获得10
2秒前
共享精神应助weilu采纳,获得10
4秒前
5秒前
6秒前
卡皮巴拉下班完成签到,获得积分10
6秒前
7秒前
7秒前
大模型应助盛弟采纳,获得10
8秒前
8秒前
9秒前
现代代双发布了新的文献求助10
9秒前
9秒前
传奇3应助叮咚采纳,获得10
10秒前
桐桐应助Deadman采纳,获得10
10秒前
谢俏艳发布了新的文献求助10
11秒前
一只鱼发布了新的文献求助10
11秒前
XoXo完成签到,获得积分10
11秒前
dff发布了新的文献求助10
12秒前
刹那的颜色完成签到,获得积分10
14秒前
GEeZiii发布了新的文献求助10
15秒前
15秒前
31313发布了新的文献求助10
15秒前
科研助手6应助培爷采纳,获得10
16秒前
丽莉完成签到,获得积分10
17秒前
田様应助刘猛闯采纳,获得10
17秒前
17秒前
南星完成签到 ,获得积分10
18秒前
dff完成签到,获得积分10
18秒前
18秒前
zeng完成签到,获得积分10
19秒前
盛弟发布了新的文献求助10
20秒前
21秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021