清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-supervised monocular depth estimation from oblique UAV videos

人工智能 计算机科学 计算机视觉 单眼 深度学习 卷积神经网络 摄影测量学 深度图 图像(数学)
作者
Logambal Madhuanand,Francesco Nex,Michael Ying Yang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:176: 1-14 被引量:28
标识
DOI:10.1016/j.isprsjprs.2021.03.024
摘要

Unmanned Aerial Vehicles (UAVs) have become an essential photogrammetric measurement as they are affordable, easily accessible and versatile. Aerial images captured from UAVs have applications in small and large scale texture mapping, 3D modelling, object detection tasks, Digital Terrain Model (DTM) and Digital Surface Model (DSM) generation etc. Photogrammetric techniques are routinely used for 3D reconstruction from UAV images where multiple images of the same scene are acquired. Developments in computer vision and deep learning techniques have made Single Image Depth Estimation (SIDE) a field of intense research. Using SIDE techniques on UAV images can overcome the need for multiple images for 3D reconstruction. This paper aims to estimate depth from a single UAV aerial image using deep learning. We follow a self-supervised learning approach, Self-Supervised Monocular Depth Estimation (SMDE), which does not need ground truth depth or any extra information other than images for learning to estimate depth. Monocular video frames are used for training the deep learning model which learns depth and pose information jointly through two different networks, one each for depth and pose. The predicted depth and pose are used to reconstruct one image from the viewpoint of another image utilising the temporal information from videos. We propose a novel architecture with two 2D Convolutional Neural Network (CNN) encoders and a 3D CNN decoder for extracting information from consecutive temporal frames. A contrastive loss term is introduced for improving the quality of image generation. Our experiments are carried out on the public UAVid video dataset. The experimental results demonstrate that our model outperforms the state-of-the-art methods in estimating the depths.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thi发布了新的文献求助10
4秒前
无悔完成签到 ,获得积分0
10秒前
笔墨纸砚完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Thi完成签到,获得积分10
20秒前
34秒前
40秒前
41秒前
47秒前
吃饱再睡完成签到 ,获得积分10
59秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
酷酷的紫南完成签到 ,获得积分10
1分钟前
1分钟前
xue完成签到 ,获得积分10
1分钟前
冰凌心恋完成签到,获得积分10
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
hanlixuan完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
wanci应助john2333采纳,获得10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
Jin完成签到,获得积分10
2分钟前
jin完成签到,获得积分10
2分钟前
3分钟前
aming发布了新的文献求助10
3分钟前
john2333关注了科研通微信公众号
3分钟前
3分钟前
melody完成签到 ,获得积分10
3分钟前
john2333发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
深情安青应助www采纳,获得10
4分钟前
Scheduling完成签到 ,获得积分10
4分钟前
bigtree完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304