Self-supervised monocular depth estimation from oblique UAV videos

人工智能 计算机科学 计算机视觉 单眼 深度学习 卷积神经网络 摄影测量学 深度图 图像(数学)
作者
Logambal Madhuanand,Francesco Nex,Michael Ying Yang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:176: 1-14 被引量:28
标识
DOI:10.1016/j.isprsjprs.2021.03.024
摘要

Unmanned Aerial Vehicles (UAVs) have become an essential photogrammetric measurement as they are affordable, easily accessible and versatile. Aerial images captured from UAVs have applications in small and large scale texture mapping, 3D modelling, object detection tasks, Digital Terrain Model (DTM) and Digital Surface Model (DSM) generation etc. Photogrammetric techniques are routinely used for 3D reconstruction from UAV images where multiple images of the same scene are acquired. Developments in computer vision and deep learning techniques have made Single Image Depth Estimation (SIDE) a field of intense research. Using SIDE techniques on UAV images can overcome the need for multiple images for 3D reconstruction. This paper aims to estimate depth from a single UAV aerial image using deep learning. We follow a self-supervised learning approach, Self-Supervised Monocular Depth Estimation (SMDE), which does not need ground truth depth or any extra information other than images for learning to estimate depth. Monocular video frames are used for training the deep learning model which learns depth and pose information jointly through two different networks, one each for depth and pose. The predicted depth and pose are used to reconstruct one image from the viewpoint of another image utilising the temporal information from videos. We propose a novel architecture with two 2D Convolutional Neural Network (CNN) encoders and a 3D CNN decoder for extracting information from consecutive temporal frames. A contrastive loss term is introduced for improving the quality of image generation. Our experiments are carried out on the public UAVid video dataset. The experimental results demonstrate that our model outperforms the state-of-the-art methods in estimating the depths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科研通AI5应助sun采纳,获得10
2秒前
shitzu完成签到 ,获得积分10
3秒前
choco发布了新的文献求助10
5秒前
6秒前
李健的小迷弟应助sun采纳,获得10
6秒前
Jzhang应助liyuchen采纳,获得10
6秒前
魏伯安发布了新的文献求助30
6秒前
jjjjjj发布了新的文献求助30
8秒前
9秒前
伯赏诗霜发布了新的文献求助10
9秒前
糟糕的鹏飞完成签到 ,获得积分10
10秒前
10秒前
欢呼凡旋完成签到,获得积分10
11秒前
韩邹光完成签到,获得积分10
13秒前
xg发布了新的文献求助10
13秒前
14秒前
dktrrrr完成签到,获得积分10
14秒前
季生完成签到,获得积分10
17秒前
徐徐完成签到,获得积分10
17秒前
18秒前
18秒前
haku完成签到,获得积分10
20秒前
可爱的函函应助laodie采纳,获得10
22秒前
Singularity应助忆楠采纳,获得10
23秒前
24秒前
请叫我风吹麦浪应助PengHu采纳,获得30
25秒前
jjjjjj完成签到,获得积分10
25秒前
凝子老师发布了新的文献求助10
27秒前
27秒前
橙子fy16_发布了新的文献求助10
29秒前
cookie完成签到,获得积分10
29秒前
柒柒的小熊完成签到,获得积分10
30秒前
30秒前
Hello应助萌之痴痴采纳,获得10
31秒前
hahaer完成签到,获得积分10
33秒前
领导范儿应助失眠虔纹采纳,获得10
34秒前
35秒前
Owen应助凝子老师采纳,获得10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849