Self-supervised monocular depth estimation from oblique UAV videos

人工智能 计算机科学 计算机视觉 单眼 深度学习 卷积神经网络 摄影测量学 深度图 图像(数学)
作者
Logambal Madhuanand,Francesco Nex,Michael Ying Yang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:176: 1-14 被引量:28
标识
DOI:10.1016/j.isprsjprs.2021.03.024
摘要

Unmanned Aerial Vehicles (UAVs) have become an essential photogrammetric measurement as they are affordable, easily accessible and versatile. Aerial images captured from UAVs have applications in small and large scale texture mapping, 3D modelling, object detection tasks, Digital Terrain Model (DTM) and Digital Surface Model (DSM) generation etc. Photogrammetric techniques are routinely used for 3D reconstruction from UAV images where multiple images of the same scene are acquired. Developments in computer vision and deep learning techniques have made Single Image Depth Estimation (SIDE) a field of intense research. Using SIDE techniques on UAV images can overcome the need for multiple images for 3D reconstruction. This paper aims to estimate depth from a single UAV aerial image using deep learning. We follow a self-supervised learning approach, Self-Supervised Monocular Depth Estimation (SMDE), which does not need ground truth depth or any extra information other than images for learning to estimate depth. Monocular video frames are used for training the deep learning model which learns depth and pose information jointly through two different networks, one each for depth and pose. The predicted depth and pose are used to reconstruct one image from the viewpoint of another image utilising the temporal information from videos. We propose a novel architecture with two 2D Convolutional Neural Network (CNN) encoders and a 3D CNN decoder for extracting information from consecutive temporal frames. A contrastive loss term is introduced for improving the quality of image generation. Our experiments are carried out on the public UAVid video dataset. The experimental results demonstrate that our model outperforms the state-of-the-art methods in estimating the depths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangbo666发布了新的文献求助10
刚刚
Biggest发布了新的文献求助10
1秒前
1秒前
2秒前
清蒸鱼完成签到 ,获得积分10
2秒前
2秒前
慕青应助zyc采纳,获得10
3秒前
6秒前
6秒前
西红柿炒番茄应助12采纳,获得10
6秒前
Ava应助Biggest采纳,获得10
7秒前
8秒前
陈军应助刻苦的安白采纳,获得20
9秒前
carryxu发布了新的文献求助10
9秒前
吴彦祖发布了新的文献求助20
12秒前
13秒前
feijix完成签到,获得积分10
13秒前
PaulaD完成签到,获得积分10
13秒前
爱大美完成签到,获得积分10
14秒前
万晶发布了新的文献求助10
17秒前
乐乐应助阳光的血茗采纳,获得10
17秒前
SciGPT应助1111111采纳,获得10
18秒前
任性的水风完成签到,获得积分10
19秒前
周和乐完成签到,获得积分10
20秒前
NPC应助西米采纳,获得20
22秒前
22秒前
舒心静白发布了新的文献求助10
23秒前
栗子完成签到 ,获得积分10
25秒前
Bressanone发布了新的文献求助10
25秒前
科研通AI2S应助周和乐采纳,获得10
26秒前
26秒前
汉堡包应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
DongZhikai应助科研通管家采纳,获得10
27秒前
香蕉奎应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
良辰应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得30
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154458
求助须知:如何正确求助?哪些是违规求助? 2805352
关于积分的说明 7864477
捐赠科研通 2463541
什么是DOI,文献DOI怎么找? 1311399
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821