Multi-objective optimization of a cryogenic cold energy recovery system for LNG regasification

尺寸 火用 质量流量 可用能 工艺工程 环境科学 多目标优化 资本成本 工程类 质量流 汽车工程 高效能源利用 数学优化 电气工程 数学 物理 热力学 艺术 视觉艺术
作者
Yunlin Shao,K.Y. Soh,Y.D. Wan,Z.F. Huang,M.R. Islam,K.J. Chua
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:244: 114524-114524 被引量:23
标识
DOI:10.1016/j.enconman.2021.114524
摘要

Regasification of LNG for combustion in power plants typically employ seawater as a heat carrier in Open-Rack Vaporizers (ORV), causing much of the cold energy to be lost to the ambient. A comprehensive literature review shows that, thus far, no studies have been conducted to simultaneously consider the impacts of the exergy, economy and environment in the optimal design of a hybrid LNG recovery system. This paper aims to address this knowledge gap by establishing a multi-objective optimization model for a novel cascading quad-generation cold energy LNG recovery system. Single- and multi-objective optimizations based on Fuzzy method and Pareto optimal method are carried out on the proposed system to obtain the optimal operating parameters and component sizing, as well as the corresponding performances for each condition. The optimal sizing for each stage is computed for the maximizing of exergy efficiency and CO2 savings rate, and the minimizing of capital cost. The exergy efficiency obtained from the triple-objective optimization yields 12.3% improvement compared to the best result from the single-objective optimization with a 5 kg/s LNG mass flow rate. In addition, when the LNG mass flow is larger than 1 kg/s, the maximized exergy efficiency remains constant (around 0.13) with increasing LNG mass flow rate while the maximized CO2 emission reduction rate and minimized total cost per year increase linearly with the LNG mass flow rate. It has been demonstrated in this work that the system is able to maintain consistency in performance for the optimal design conditions over a wide range of LNG demands and hence good scalability for possible industrial and commercial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰金完成签到,获得积分10
刚刚
刚刚
上官若男应助YYJJHH采纳,获得10
1秒前
鸣笛应助lala采纳,获得10
1秒前
隐形曼青应助冒泡采纳,获得10
2秒前
帅气豌豆完成签到,获得积分10
2秒前
xujiayi发布了新的文献求助10
2秒前
2秒前
科研通AI6应助ccc采纳,获得10
2秒前
FangY1完成签到,获得积分10
3秒前
4秒前
朴素幼晴发布了新的文献求助30
4秒前
十年发布了新的文献求助20
4秒前
4秒前
斯文败类应助....采纳,获得10
5秒前
叶艳完成签到 ,获得积分10
5秒前
躺平girl发布了新的文献求助10
5秒前
健忘的安萱完成签到,获得积分20
5秒前
二龙湖完成签到,获得积分10
5秒前
饼饼完成签到,获得积分10
5秒前
司藤完成签到 ,获得积分10
6秒前
advance完成签到,获得积分10
6秒前
可爱的函函应助qq采纳,获得10
6秒前
何劲松完成签到,获得积分10
6秒前
冷静新烟发布了新的文献求助10
7秒前
Mat应助11楼阿水采纳,获得10
7秒前
7秒前
shadow发布了新的文献求助30
7秒前
伶俐的不尤完成签到,获得积分10
8秒前
8秒前
夜幕应助清辉夜凝采纳,获得20
8秒前
8秒前
9秒前
soyo完成签到 ,获得积分10
9秒前
9秒前
英姑应助儒雅的忆翠采纳,获得10
9秒前
fufu符发布了新的文献求助10
9秒前
lllll完成签到,获得积分10
9秒前
我是老大应助mch采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573107
求助须知:如何正确求助?哪些是违规求助? 3993602
关于积分的说明 12363019
捐赠科研通 3666834
什么是DOI,文献DOI怎么找? 2020933
邀请新用户注册赠送积分活动 1055090
科研通“疑难数据库(出版商)”最低求助积分说明 942509