Multi-objective optimization of a cryogenic cold energy recovery system for LNG regasification

尺寸 火用 质量流量 可用能 工艺工程 环境科学 多目标优化 资本成本 工程类 质量流 汽车工程 高效能源利用 数学优化 电气工程 数学 艺术 视觉艺术 物理 热力学
作者
Yunlin Shao,K.Y. Soh,Y.D. Wan,Z.F. Huang,M.R. Islam,K.J. Chua
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:244: 114524-114524 被引量:23
标识
DOI:10.1016/j.enconman.2021.114524
摘要

Regasification of LNG for combustion in power plants typically employ seawater as a heat carrier in Open-Rack Vaporizers (ORV), causing much of the cold energy to be lost to the ambient. A comprehensive literature review shows that, thus far, no studies have been conducted to simultaneously consider the impacts of the exergy, economy and environment in the optimal design of a hybrid LNG recovery system. This paper aims to address this knowledge gap by establishing a multi-objective optimization model for a novel cascading quad-generation cold energy LNG recovery system. Single- and multi-objective optimizations based on Fuzzy method and Pareto optimal method are carried out on the proposed system to obtain the optimal operating parameters and component sizing, as well as the corresponding performances for each condition. The optimal sizing for each stage is computed for the maximizing of exergy efficiency and CO2 savings rate, and the minimizing of capital cost. The exergy efficiency obtained from the triple-objective optimization yields 12.3% improvement compared to the best result from the single-objective optimization with a 5 kg/s LNG mass flow rate. In addition, when the LNG mass flow is larger than 1 kg/s, the maximized exergy efficiency remains constant (around 0.13) with increasing LNG mass flow rate while the maximized CO2 emission reduction rate and minimized total cost per year increase linearly with the LNG mass flow rate. It has been demonstrated in this work that the system is able to maintain consistency in performance for the optimal design conditions over a wide range of LNG demands and hence good scalability for possible industrial and commercial settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nito发布了新的文献求助10
1秒前
xinxin发布了新的文献求助10
2秒前
共享精神应助北山采纳,获得10
2秒前
侠客完成签到,获得积分10
2秒前
小小月发布了新的文献求助10
2秒前
Akim应助曹梦龙采纳,获得10
3秒前
zheng发布了新的文献求助10
3秒前
凝望发布了新的文献求助10
3秒前
3秒前
赘婿应助泌尿科小医生采纳,获得10
5秒前
刘一一发布了新的文献求助10
5秒前
5秒前
5秒前
xiaolei001应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得50
5秒前
giggle应助科研通管家采纳,获得10
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
热心树叶应助科研通管家采纳,获得30
6秒前
MM应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
wanci应助科研通管家采纳,获得30
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175