Multi-objective optimization of a cryogenic cold energy recovery system for LNG regasification

尺寸 火用 质量流量 可用能 工艺工程 环境科学 多目标优化 资本成本 工程类 质量流 汽车工程 高效能源利用 数学优化 电气工程 数学 艺术 视觉艺术 物理 热力学
作者
Yunlin Shao,K.Y. Soh,Y.D. Wan,Z.F. Huang,M.R. Islam,K.J. Chua
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:244: 114524-114524 被引量:23
标识
DOI:10.1016/j.enconman.2021.114524
摘要

Regasification of LNG for combustion in power plants typically employ seawater as a heat carrier in Open-Rack Vaporizers (ORV), causing much of the cold energy to be lost to the ambient. A comprehensive literature review shows that, thus far, no studies have been conducted to simultaneously consider the impacts of the exergy, economy and environment in the optimal design of a hybrid LNG recovery system. This paper aims to address this knowledge gap by establishing a multi-objective optimization model for a novel cascading quad-generation cold energy LNG recovery system. Single- and multi-objective optimizations based on Fuzzy method and Pareto optimal method are carried out on the proposed system to obtain the optimal operating parameters and component sizing, as well as the corresponding performances for each condition. The optimal sizing for each stage is computed for the maximizing of exergy efficiency and CO2 savings rate, and the minimizing of capital cost. The exergy efficiency obtained from the triple-objective optimization yields 12.3% improvement compared to the best result from the single-objective optimization with a 5 kg/s LNG mass flow rate. In addition, when the LNG mass flow is larger than 1 kg/s, the maximized exergy efficiency remains constant (around 0.13) with increasing LNG mass flow rate while the maximized CO2 emission reduction rate and minimized total cost per year increase linearly with the LNG mass flow rate. It has been demonstrated in this work that the system is able to maintain consistency in performance for the optimal design conditions over a wide range of LNG demands and hence good scalability for possible industrial and commercial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到 ,获得积分10
刚刚
scatletIvory完成签到,获得积分10
1秒前
bkagyin应助呆崽采纳,获得10
1秒前
顺顺完成签到,获得积分10
2秒前
2秒前
3天完成签到,获得积分10
2秒前
超帅发布了新的文献求助30
2秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
香芋应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Yifan2024应助harden9159采纳,获得10
5秒前
斯文败类应助caas6采纳,获得10
5秒前
lalalapa666发布了新的文献求助10
6秒前
成帅哥完成签到,获得积分10
7秒前
7秒前
酷波er应助zoe采纳,获得10
9秒前
10秒前
10秒前
wanglongjun完成签到,获得积分20
11秒前
harden9159应助文件撤销了驳回
12秒前
12秒前
scatletIvory发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
15秒前
orixero应助苗条的晓夏采纳,获得10
16秒前
SciGPT应助Pyrene采纳,获得10
16秒前
封从霜发布了新的文献求助10
17秒前
斯文败类应助阳光涫采纳,获得10
17秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348453
求助须知:如何正确求助?哪些是违规求助? 2974719
关于积分的说明 8665360
捐赠科研通 2655295
什么是DOI,文献DOI怎么找? 1453945
科研通“疑难数据库(出版商)”最低求助积分说明 673175
邀请新用户注册赠送积分活动 663411