Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助王与可采纳,获得10
1秒前
科研通AI6应助壮观的可以采纳,获得10
1秒前
Li完成签到,获得积分20
1秒前
李健应助cjw采纳,获得10
2秒前
2秒前
xiaominza发布了新的文献求助30
2秒前
万能图书馆应助西瓜妹采纳,获得10
2秒前
粗暴的达发布了新的文献求助10
2秒前
科研通AI6应助风中泰坦采纳,获得10
3秒前
3秒前
彭于晏应助长风采纳,获得10
3秒前
依克完成签到,获得积分10
3秒前
3秒前
3秒前
cccat发布了新的文献求助50
4秒前
格林维度关注了科研通微信公众号
4秒前
领导范儿应助忘的澜采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得60
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
挽歌发布了新的文献求助20
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
ytzhang0587应助科研通管家采纳,获得20
5秒前
科研通AI6应助hhh采纳,获得10
5秒前
spc68应助科研通管家采纳,获得20
5秒前
Mida应助chenchenchen采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905