Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋浩奇完成签到,获得积分10
刚刚
1秒前
1秒前
王康发布了新的文献求助10
2秒前
隐形曼青应助Daniel2010采纳,获得10
2秒前
DY驳回了英姑应助
3秒前
精灵夜雨完成签到,获得积分10
3秒前
宋浩奇发布了新的文献求助10
4秒前
iNk应助欧皇采纳,获得10
4秒前
4秒前
4秒前
Tyler发布了新的文献求助10
6秒前
6秒前
科研通AI6应助sifLiu采纳,获得10
6秒前
6秒前
害羞彩虹完成签到,获得积分20
7秒前
没有名称完成签到,获得积分10
7秒前
7秒前
王康完成签到,获得积分10
8秒前
8秒前
冷傲迎梦发布了新的文献求助10
9秒前
搜集达人应助111版采纳,获得10
11秒前
wanwusheng完成签到,获得积分10
13秒前
WUJIAYU完成签到,获得积分10
14秒前
16秒前
suger完成签到,获得积分10
17秒前
20秒前
蔺蔺发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
Yu完成签到,获得积分20
23秒前
废寝忘食发布了新的文献求助10
24秒前
liliuuuuuuuu发布了新的文献求助10
26秒前
ybheart发布了新的文献求助10
27秒前
孙敬涵完成签到,获得积分10
27秒前
Tengami完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
宽宽完成签到,获得积分10
30秒前
李健应助小付采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415163
求助须知:如何正确求助?哪些是违规求助? 4531822
关于积分的说明 14130468
捐赠科研通 4447366
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431779
关于科研通互助平台的介绍 1409365