已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
tuanheqi应助科研通管家采纳,获得160
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Tranquynh23完成签到,获得积分10
5秒前
5秒前
8秒前
8秒前
短短急个球完成签到,获得积分10
10秒前
星辰大海应助科研小巴采纳,获得10
12秒前
小蘑菇发布了新的文献求助10
13秒前
13秒前
Cecilia发布了新的文献求助50
14秒前
黑摄会阿Fay完成签到,获得积分10
15秒前
15秒前
17秒前
随机科研完成签到,获得积分10
17秒前
烟花应助小盖采纳,获得10
17秒前
MJH123456发布了新的文献求助10
19秒前
大神瓜发布了新的文献求助10
20秒前
21秒前
21秒前
张张发布了新的文献求助10
21秒前
是菜团子呀完成签到 ,获得积分10
22秒前
css1997完成签到 ,获得积分10
23秒前
25秒前
曾经易烟完成签到,获得积分20
25秒前
27秒前
27秒前
科目三应助张张采纳,获得10
28秒前
wam关闭了wam文献求助
28秒前
小盖发布了新的文献求助10
30秒前
31秒前
31秒前
科研通AI6应助喵晓懒采纳,获得10
31秒前
科研小巴发布了新的文献求助10
32秒前
BruceZh完成签到,获得积分10
34秒前
小蘑菇完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875