Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助poke采纳,获得10
刚刚
zhangxinan完成签到,获得积分10
刚刚
刚刚
xiaobai完成签到,获得积分10
刚刚
冷静远望完成签到,获得积分10
1秒前
1秒前
1秒前
小虫子完成签到,获得积分20
1秒前
秋山柳完成签到,获得积分10
1秒前
秦pale完成签到,获得积分10
2秒前
3秒前
研友_VZG7GZ应助慌张采纳,获得10
3秒前
3秒前
寒冷书竹发布了新的文献求助10
4秒前
5秒前
盆栽完成签到,获得积分10
6秒前
6秒前
墨染樱飞完成签到 ,获得积分10
7秒前
打打应助baekhyun采纳,获得10
7秒前
kiki发布了新的文献求助10
7秒前
79发布了新的文献求助10
7秒前
北海西贝发布了新的文献求助10
8秒前
ecnuzdd发布了新的文献求助10
8秒前
NL14D发布了新的文献求助10
8秒前
蘑菇屋应助秋山柳采纳,获得10
8秒前
吕佳完成签到,获得积分10
8秒前
CodeCraft应助LaDilettante采纳,获得10
9秒前
英俊的铭应助鬼眼刀狂采纳,获得10
9秒前
慧喆完成签到 ,获得积分10
9秒前
10秒前
搜集达人应助王嘉尔采纳,获得10
10秒前
惠慧发布了新的文献求助10
11秒前
12秒前
坚强怀绿完成签到,获得积分10
12秒前
Moonburn完成签到 ,获得积分10
12秒前
圈圈完成签到,获得积分10
12秒前
SYLH应助追寻的孤风采纳,获得30
12秒前
zx发布了新的文献求助10
13秒前
13秒前
生动的鹰完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121