Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无恙发布了新的文献求助10
刚刚
1秒前
昔颜完成签到,获得积分10
1秒前
1秒前
田様应助Mt采纳,获得10
3秒前
LUO完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
问夏发布了新的文献求助10
6秒前
Zyw完成签到 ,获得积分10
6秒前
7秒前
乌贼完成签到 ,获得积分10
7秒前
陆驳发布了新的文献求助10
7秒前
暖风sunny完成签到,获得积分10
8秒前
高兴的百褶裙完成签到,获得积分10
8秒前
SciGPT应助无wu采纳,获得10
9秒前
萧萧完成签到,获得积分0
9秒前
10秒前
10秒前
11秒前
深情安青应助机智跳跳糖采纳,获得10
11秒前
LCC发布了新的文献求助10
11秒前
hhllhh发布了新的文献求助10
12秒前
12秒前
12秒前
Zyw关注了科研通微信公众号
13秒前
14秒前
微光熠发布了新的文献求助10
14秒前
称心的水蓉完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
nature榜上发布了新的文献求助10
14秒前
Owen应助人类不宜搞科研采纳,获得10
14秒前
ww完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277