Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助小管采纳,获得10
刚刚
默许冰心完成签到,获得积分10
刚刚
1秒前
冬青ouo完成签到,获得积分10
1秒前
2秒前
上官若男应助夕荀采纳,获得10
2秒前
细腻砖头应助邹益春采纳,获得10
2秒前
2秒前
WD发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
Li应助hsa_ID采纳,获得10
4秒前
微信研友发布了新的文献求助10
4秒前
阿乔发布了新的文献求助10
5秒前
嘿嘿嘿发布了新的文献求助10
5秒前
完美星落完成签到,获得积分10
5秒前
wuhao1完成签到,获得积分20
5秒前
liaoyu发布了新的文献求助10
5秒前
香蕉觅云应助XIAONIE25采纳,获得10
6秒前
guojingjing发布了新的文献求助10
6秒前
lilei发布了新的文献求助10
6秒前
达奚多思完成签到,获得积分10
6秒前
6秒前
纯真忆安发布了新的文献求助10
6秒前
6秒前
RRRRR1完成签到,获得积分20
6秒前
修马儿完成签到,获得积分10
7秒前
科研通AI6应助二胡儿采纳,获得10
7秒前
夕未息关注了科研通微信公众号
7秒前
科目三应助乐乐侠采纳,获得10
8秒前
小管完成签到,获得积分10
8秒前
ZCM发布了新的文献求助10
8秒前
8秒前
暴躁的夏之完成签到,获得积分10
8秒前
8秒前
文思泉涌完成签到,获得积分10
8秒前
ahua完成签到 ,获得积分10
9秒前
虚心早晨完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285