Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助毛123采纳,获得10
2秒前
2秒前
852应助快乐的紫寒采纳,获得10
2秒前
2秒前
橙子完成签到 ,获得积分10
2秒前
桐桐应助舒适从菡采纳,获得10
3秒前
pass发布了新的文献求助10
4秒前
eli完成签到,获得积分0
5秒前
5秒前
心灵美天奇完成签到 ,获得积分10
5秒前
外向的项链完成签到,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
伍岚正完成签到,获得积分20
7秒前
归远发布了新的文献求助50
7秒前
7秒前
fxsg发布了新的文献求助10
8秒前
9秒前
专注的芷发布了新的文献求助10
10秒前
无名应助RuiminXie采纳,获得10
11秒前
hui发布了新的文献求助10
12秒前
Owen应助咖啡头发采纳,获得30
12秒前
aga发布了新的文献求助10
12秒前
生动觅柔完成签到,获得积分10
12秒前
12秒前
上官若男应助pass采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
爱小尹完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
来日昭昭应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
robert3324应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
蓝天应助科研通管家采纳,获得10
14秒前
狂野裘应助科研通管家采纳,获得50
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721