Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助小小研究牲11采纳,获得10
刚刚
Joy发布了新的文献求助10
刚刚
顾矜应助不呐呐采纳,获得10
刚刚
ndhy完成签到,获得积分10
1秒前
1秒前
jeonghan发布了新的文献求助10
1秒前
wy_wy发布了新的文献求助10
1秒前
1秒前
twinkle完成签到,获得积分10
2秒前
hui发布了新的文献求助10
3秒前
马吉克完成签到 ,获得积分10
3秒前
文森特的向日葵完成签到,获得积分10
3秒前
如初发布了新的文献求助10
3秒前
Cccrik完成签到,获得积分10
3秒前
王小雨完成签到 ,获得积分10
3秒前
猪猪hero发布了新的文献求助10
4秒前
浮若安生完成签到,获得积分10
4秒前
5秒前
邵丹完成签到 ,获得积分20
5秒前
Cccrik发布了新的文献求助30
6秒前
汉堡包应助一刀采纳,获得10
6秒前
6秒前
Dr.向发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助and999采纳,获得10
8秒前
英俊的铭应助夜莺采纳,获得10
9秒前
在水一方应助夜莺采纳,获得10
9秒前
Lucas应助夜莺采纳,获得10
9秒前
Jasper应助夜莺采纳,获得10
9秒前
完美世界应助onepine采纳,获得10
9秒前
落后青筠完成签到 ,获得积分10
9秒前
11秒前
JamesPei应助jeonghan采纳,获得10
12秒前
Adler发布了新的文献求助60
12秒前
wy_wy完成签到,获得积分10
12秒前
情怀应助猪猪hero采纳,获得10
13秒前
浮华完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069