亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
flyinthesky完成签到,获得积分10
8秒前
111发布了新的文献求助10
11秒前
xmsyq完成签到 ,获得积分10
16秒前
CipherSage应助杨sq采纳,获得10
16秒前
科研通AI6应助111采纳,获得10
20秒前
21秒前
555完成签到,获得积分10
29秒前
张晓祁完成签到,获得积分10
29秒前
科研通AI6应助Re采纳,获得10
31秒前
yueying完成签到,获得积分10
39秒前
蛋白激酶完成签到,获得积分10
47秒前
53秒前
53秒前
杨sq完成签到 ,获得积分10
54秒前
OFish完成签到,获得积分10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
1分钟前
迷人紫萍发布了新的文献求助10
1分钟前
ly完成签到,获得积分10
1分钟前
丘比特应助liz采纳,获得10
1分钟前
学术小白发布了新的文献求助10
1分钟前
机智觅柔完成签到,获得积分10
2分钟前
2分钟前
机智觅柔发布了新的文献求助10
2分钟前
moumou完成签到 ,获得积分10
2分钟前
浮游应助小楼初晴采纳,获得10
2分钟前
LYL完成签到,获得积分10
2分钟前
啦啦啦啦啦完成签到 ,获得积分10
2分钟前
小楼初晴完成签到,获得积分10
2分钟前
顺利大门发布了新的文献求助210
2分钟前
李洛华哥发布了新的文献求助10
2分钟前
2分钟前
小点点完成签到,获得积分10
2分钟前
2分钟前
2分钟前
浮游应助shui采纳,获得10
3分钟前
洁净的钢笔完成签到 ,获得积分10
3分钟前
吉祥高趙完成签到 ,获得积分10
3分钟前
薛建伟完成签到 ,获得积分10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644589
求助须知:如何正确求助?哪些是违规求助? 4764650
关于积分的说明 15025321
捐赠科研通 4802952
什么是DOI,文献DOI怎么找? 2567771
邀请新用户注册赠送积分活动 1525410
关于科研通互助平台的介绍 1484895