Machine learning for materials discovery: Two-dimensional topological insulators

拓扑(电路)
作者
Gabriel R. Schleder,Bruno Focassio,Adalberto Fazzio
出处
期刊:Applied physics reviews 卷期号:8 (3): 031409- 被引量:2
标识
DOI:10.1063/5.0055035
摘要

One of the main goals and challenges of materials discovery is to find the best candidates for each interest property or application. Machine learning rises in this context to efficiently optimize this search, exploring the immense materials space, consisting of simultaneously the atomic, compositional, and structural spaces. Topological insulators, presenting symmetry-protected metallic edge states, are a promising class of materials for different applications. However, further development is limited by the scarcity of viable candidates. Here we present and discuss machine learning–accelerated strategies for searching the materials space for two-dimensional topological materials. We show the importance of detailed investigations of each machine learning component, leading to different results. Using recently created databases containing thousands of ab initio calculations of 2D materials, we train machine learning models capable of determining the electronic topology of materials, with an accuracy of over 90%. We can then generate and screen thousands of novel materials, efficiently predicting their topological character without the need for a priori structural knowledge. We discover 56 non-trivial materials, of which 17 are novel insulating candidates for further investigation, for which we corroborate their topological properties with density functional theory calculations. This strategy is 10× more efficient than the trial-and-error approach while a few orders of magnitude faster and is a proof of concept for guiding improved materials discovery search strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jkq发布了新的文献求助10
1秒前
田様应助jiaozitop采纳,获得10
2秒前
火翟丰丰山心完成签到,获得积分10
2秒前
2秒前
汉堡包应助阿滕采纳,获得50
2秒前
Jasper应助wjq采纳,获得10
3秒前
传奇3应助zz采纳,获得10
3秒前
科研通AI6应助怡然的天思采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
桐桐应助xupt唐僧采纳,获得10
5秒前
烟花应助月星采纳,获得10
6秒前
哈哈发布了新的文献求助20
8秒前
8秒前
march发布了新的文献求助10
8秒前
Lucas应助zhzhzh采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
丘比特应助jkq采纳,获得10
11秒前
李健的粉丝团团长应助zz采纳,获得10
12秒前
13秒前
13秒前
衡珩蘅发布了新的文献求助30
14秒前
14秒前
高高的起眸完成签到,获得积分10
14秒前
14秒前
林夕发布了新的文献求助10
15秒前
15秒前
852应助饱满的琦采纳,获得10
15秒前
阿滕发布了新的文献求助50
15秒前
16秒前
负责的魔镜完成签到,获得积分10
16秒前
asteria211完成签到,获得积分10
16秒前
酷波er应助wangli采纳,获得10
16秒前
kylin发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663626
求助须知:如何正确求助?哪些是违规求助? 4851558
关于积分的说明 15105133
捐赠科研通 4821911
什么是DOI,文献DOI怎么找? 2581045
邀请新用户注册赠送积分活动 1535206
关于科研通互助平台的介绍 1493587