Mask2Defect: A Prior Knowledge-Based Data Augmentation Method for Metal Surface Defect Inspection

计算机科学 人工智能 转化(遗传学) 编码器 领域(数学分析) 计算机视觉 领域知识 旋转(数学) 航程(航空) 模式识别(心理学) 工程类 数学 航空航天工程 数学分析 操作系统 化学 基因 生物化学
作者
Benyi Yang,Zhenyu Liu,Guifang Duan,Jianrong Tan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (10): 6743-6755 被引量:29
标识
DOI:10.1109/tii.2021.3126098
摘要

For metal surface defect inspection, deep-learning-based methods have largely improved the inspection accuracy. However, insufficient data and the diversity of defects usually pose challenges for these methods. To solve these problems, traditional data augmentation methods often augment data by applying image-level geometric variations, usually without introducing new features of unknown defects, which yields limited improvements in defect inspection. Given such circumstances, in this article, a new data augmentation algorithm named Mask2Defect is proposed. Via prior knowledge-based data infusing, this method is able to generate defects with varied features. A large volume of defects with different shapes, severities, scales, rotation angles, spatial locations, and part numbers can be generated in a controllable manner. These generated defects will work as teacher samples to fine-tune the inspection model and automatically adapt it to a wider range of defects. To be specific, we first encode the prior knowledge into the teacher mask via the industrial prior knowledge encoder and render the defect details according to the mask with the mask-to-defect construction network. Then, the fake-to-real domain transformation GAN is used to transform the rendered samples from the fake domain into the real defect domain. Experiments reveal that the synthesized image quality of our method outperforms the state-of-the-art generative methods, and the performance of the inspection model in defect classification and localization has also been improved by fine-tuning with the generated samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪雪儿发布了新的文献求助10
刚刚
机智友蕊完成签到 ,获得积分10
刚刚
McbxM发布了新的文献求助10
1秒前
醉熏的幼珊完成签到,获得积分10
1秒前
1秒前
繁星发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
5秒前
聪慧恶天发布了新的文献求助10
5秒前
笑笑发布了新的文献求助10
5秒前
dongkk发布了新的文献求助10
5秒前
x5kyi发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
life完成签到,获得积分10
8秒前
threonine完成签到,获得积分10
9秒前
orixero应助犹豫帆布鞋采纳,获得10
9秒前
CodeCraft应助直率的花生采纳,获得10
10秒前
三金发布了新的文献求助30
10秒前
shilong.yang发布了新的文献求助10
10秒前
10秒前
cherlie应助McbxM采纳,获得10
10秒前
11秒前
11秒前
uu发布了新的文献求助30
12秒前
yaoyu发布了新的文献求助10
12秒前
threonine发布了新的文献求助10
12秒前
泽灵发布了新的文献求助10
13秒前
爆米花应助Majiko采纳,获得10
15秒前
15秒前
深情安青应助隐形的蓝天采纳,获得10
15秒前
可乐发布了新的文献求助10
16秒前
马丝雨完成签到,获得积分10
16秒前
泰裤辣发布了新的文献求助10
17秒前
布丁发布了新的文献求助10
17秒前
17秒前
欢乐谷完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806