卟啉
检出限
荧光
核酸
化学
组合化学
色谱法
光化学
生物化学
量子力学
物理
作者
Pian Wu,Xiaosheng Ye,Danqi Wang,Fangjie Gong,Xiaoqian Wei,Xiang Shan,Jingwen Zhang,Tianhan Kai,Ping Ding
标识
DOI:10.1016/j.jhazmat.2021.127690
摘要
Selective and sensitive detection of microcystin-LR (MC-LR) is of vital importance because of its high toxicity and broad distribution. Herein, a novel and versatile fluorescence sensor (Cas14-pMOFs fluorescence sensor) was developed by combining the CRISPR/Cas14a system with a 2D porphyrin metal-organic framework nanosheets (2D-pMOFs) for MC-LR determination. The designed CRISPR/Cas14a system was activated by the unbound complementary DNA (cDNA), which was positively correlated with MC-LR concentration. Furthermore, the activated Cas14a protein was utilized to indiscriminately cleave the FAM-labeled single-stranded DNA (ssDNA-FAM), which was pre-absorbed on Cu-TCPP(Fe) nanosheets. Because of the desorption of the cleaved ssDNA-FAM, the pre-quenched fluorescence signal was recovered. Owing to the excellent performance in quantifying cDNA using this Cas14-pMOFs fluorescence sensor with a limit of detection (LOD) of 0.12 nM, this Cas14-pMOFs fluorescence sensor was able to detect MC-LR in a range from 50 pg/mL to 1 μg/mL with the LOD of 19 pg/mL. This work not only provided a new insight for the exploration of fluorescence sensors based on 2D-pMOFs coupled with CRISPR/Cas14a, but also, demonstrated its universality in both nucleic acid and non-nucleic acid targets determination.
科研通智能强力驱动
Strongly Powered by AbleSci AI