Microstructure and magnetic behaviors of FeCoNi (Al) alloys with incoherent nanoprecipitates prepared by high-pressure solidification

材料科学 微观结构 高熵合金 合金 晶界 矫顽力 体积分数 冶金 凝聚态物理 复合材料 物理
作者
T.-P. Chang,Chaoying Zou,Dongdong Zhu,X.H. Wang,Zunjie Wei,H.W Wang,Ning Fang,J.H. Chen
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:894: 162501-162501 被引量:7
标识
DOI:10.1016/j.jallcom.2021.162501
摘要

In this work, we investigated the microstructure and magnetic properties of FeCoNi (Al) high-entropy alloys (HEAs) prepared by high-pressure solidification (HPS). The results show that incoherent nanoprecipitates distributed in uniaxial grain uniformly, which significantly reduces the average magnetic anisotropy of the alloys. The maximum permeability (μm) of alloys increased prominently (i.e. from 47800 to 169000 in FeCoNi alloy and 78000–205000 in FeCoNiAl alloy) and the intrinsic coercivity decreased by 43% in FeCoNiAl alloy after HPS. Nanoprecipitates were related with the double sluggish diffusion effect (DSDE), which is caused by the coupling of high-entropy and high-pressure during solidification process. DSDE not only ensures the retention of short-range ordering (SRO) structures in the liquid metal, but also inhibits the SRO structures’ growth during the solidification process. These SRO structures provide structural conditions to the nanoprecipitates. The molecular dynamics simulation results provide support to the crucial role of DSDE on short-range ordering structures. HPS can effectively reduce the volume fraction of grain boundary precipitates also due to DSDE. Thus, DSDE exhibited the great significance to understand the microstructure of FeCoNi (Al) HEAs by HPS. The perspective also provides a paradigm to enhance the magnetic property of soft magnetic alloys significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
向南发布了新的文献求助10
2秒前
小太阳完成签到,获得积分10
3秒前
拼搏的无颜完成签到,获得积分10
3秒前
科研通AI5应助热心的映冬采纳,获得10
3秒前
5秒前
orixero应助弥弥采纳,获得10
6秒前
7秒前
zfczfc发布了新的文献求助10
7秒前
缥缈冰珍发布了新的文献求助10
8秒前
慕青应助mingjie采纳,获得30
9秒前
大个应助lvjiahe采纳,获得10
10秒前
喻亦寒发布了新的文献求助10
11秒前
彭于晏应助蜜糖小桃叽采纳,获得10
11秒前
shuang发布了新的文献求助10
12秒前
wang完成签到,获得积分10
12秒前
13秒前
过昭关发布了新的文献求助10
15秒前
TT001发布了新的文献求助10
15秒前
喻亦寒完成签到,获得积分10
16秒前
搜集达人应助努力的宁采纳,获得10
16秒前
蓝莓布朗完成签到,获得积分10
17秒前
蜘蛛道理发布了新的文献求助10
17秒前
17秒前
18秒前
完美世界应助vivi采纳,获得10
18秒前
19秒前
19秒前
李爱国应助YK采纳,获得10
20秒前
20秒前
研友_VZG7GZ应助可咳咳咳采纳,获得10
21秒前
22秒前
dominator发布了新的文献求助10
23秒前
FeifeiWang完成签到,获得积分20
23秒前
23秒前
23秒前
cijing发布了新的文献求助10
23秒前
KInn发布了新的文献求助10
24秒前
paov45完成签到,获得积分10
27秒前
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131510
求助须知:如何正确求助?哪些是违规求助? 4333301
关于积分的说明 13500077
捐赠科研通 4170192
什么是DOI,文献DOI怎么找? 2286127
邀请新用户注册赠送积分活动 1287084
关于科研通互助平台的介绍 1228076