Visual Co-Occurrence Alignment Learning for Weakly-Supervised Video Moment Retrieval

计算机科学 判别式 人工智能 特征学习 力矩(物理) 特征(语言学) 杠杆(统计) 特征向量 模式识别(心理学) 语义鸿沟 嵌入 计算机视觉 图像检索 图像(数学) 经典力学 语言学 物理 哲学
作者
Zheng Wang,Jingjing Chen,Yu‐Gang Jiang
标识
DOI:10.1145/3474085.3475278
摘要

Video moment retrieval aims to localize the most relevant video moment given the text query. Weakly supervised approaches leverage video-text pairs only for training, without temporal annotations. Most current methods align the proposed video moment and the text in a joint embedding space. However, in lack of temporal annotations, the semantic gap between these two modalities makes it predominant to learn joint feature representation for most methods, with less emphasis on learning visual feature representation. This paper aims to improve the visual feature representation with supervisions in the visual domain, obtaining discriminative visual features for cross-modal learning. Based on the observation that relevant video moments (i.e., share similar activities) from different videos are commonly described by similar sentences; hence the visual features of these relevant video moments should also be similar despite that they come from different videos. Therefore, to obtain more discriminative and robust visual features for video moment retrieval, we propose to align the visual features of relevant video moments from different videos that co-occurred in the same training batch. Besides, a contrastive learning approach is introduced for learning the moment-level alignment of these videos. Through extensive experiments, we demonstrate that the proposed visual co-occurrence alignment learning method outperforms the cross-modal alignment learning counterpart and achieves promising results for video moment retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助长愉采纳,获得10
刚刚
1秒前
小杨完成签到,获得积分10
1秒前
刘文豪发布了新的文献求助10
1秒前
Zircon完成签到 ,获得积分10
2秒前
今今完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助重要手机采纳,获得10
2秒前
遐蝶完成签到,获得积分10
2秒前
共享精神应助果实采纳,获得10
2秒前
2秒前
2秒前
3秒前
一由天完成签到,获得积分10
3秒前
光亮萤发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
泡芙发布了新的文献求助10
4秒前
jst发布了新的文献求助10
5秒前
无私烤鸡发布了新的文献求助10
5秒前
Bao发布了新的文献求助10
6秒前
热心市民小红花应助Syk_采纳,获得10
6秒前
小艾完成签到 ,获得积分20
7秒前
心海完成签到,获得积分10
7秒前
高姐姐完成签到,获得积分10
7秒前
8秒前
8秒前
袁庚完成签到 ,获得积分10
9秒前
9秒前
程昕发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
热塑性复合材料完成签到 ,获得积分20
12秒前
落寞凌波完成签到,获得积分10
13秒前
14秒前
14秒前
peekaboo完成签到,获得积分10
14秒前
hhhhhh发布了新的文献求助10
14秒前
许鑫蓁完成签到 ,获得积分10
15秒前
小青蛙OA发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149