Visual Co-Occurrence Alignment Learning for Weakly-Supervised Video Moment Retrieval

计算机科学 判别式 人工智能 特征学习 力矩(物理) 特征(语言学) 杠杆(统计) 特征向量 模式识别(心理学) 语义鸿沟 嵌入 计算机视觉 图像检索 图像(数学) 经典力学 语言学 物理 哲学
作者
Zheng Wang,Jingjing Chen,Yu‐Gang Jiang
标识
DOI:10.1145/3474085.3475278
摘要

Video moment retrieval aims to localize the most relevant video moment given the text query. Weakly supervised approaches leverage video-text pairs only for training, without temporal annotations. Most current methods align the proposed video moment and the text in a joint embedding space. However, in lack of temporal annotations, the semantic gap between these two modalities makes it predominant to learn joint feature representation for most methods, with less emphasis on learning visual feature representation. This paper aims to improve the visual feature representation with supervisions in the visual domain, obtaining discriminative visual features for cross-modal learning. Based on the observation that relevant video moments (i.e., share similar activities) from different videos are commonly described by similar sentences; hence the visual features of these relevant video moments should also be similar despite that they come from different videos. Therefore, to obtain more discriminative and robust visual features for video moment retrieval, we propose to align the visual features of relevant video moments from different videos that co-occurred in the same training batch. Besides, a contrastive learning approach is introduced for learning the moment-level alignment of these videos. Through extensive experiments, we demonstrate that the proposed visual co-occurrence alignment learning method outperforms the cross-modal alignment learning counterpart and achieves promising results for video moment retrieval.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乖乖永远在路上完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助辛勤的青易采纳,获得10
2秒前
3秒前
Augusterny发布了新的文献求助50
3秒前
4秒前
5秒前
MINGHUI完成签到,获得积分10
5秒前
bkagyin应助夜绿采纳,获得10
6秒前
万能图书馆应助英俊白玉采纳,获得10
6秒前
6秒前
良辰应助仁爱樱采纳,获得10
6秒前
颜陌发布了新的文献求助20
9秒前
Akim应助赵振辉采纳,获得10
10秒前
qiiq1997完成签到,获得积分20
10秒前
尚封发布了新的文献求助10
10秒前
11秒前
萧水白应助专一的松鼠采纳,获得10
11秒前
hanyang965发布了新的文献求助10
12秒前
vetXue完成签到,获得积分10
12秒前
13秒前
ttg990720发布了新的文献求助10
13秒前
13秒前
Lucas应助yihaiqin采纳,获得10
15秒前
melon完成签到 ,获得积分10
15秒前
17秒前
Ganlou应助小谢同学采纳,获得10
17秒前
qq发布了新的文献求助10
18秒前
moon发布了新的文献求助10
19秒前
赘婿应助SJXS采纳,获得10
20秒前
夜绿发布了新的文献求助10
20秒前
21秒前
21秒前
Flynn发布了新的文献求助10
22秒前
yy发布了新的文献求助10
22秒前
李健应助Abner采纳,获得10
23秒前
qq完成签到,获得积分20
24秒前
QQ完成签到,获得积分20
24秒前
24秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580