亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic localization of cephalometric landmarks based on convolutional neural network

地标 头影 头影测量 卷积神经网络 人工智能 计算机科学 口腔正畸科 正颌外科 集合(抽象数据类型) 头影测量分析 模式识别(心理学) 计算机视觉 医学 臼齿 覆岩 程序设计语言
作者
Jie Yao,Wei Zeng,Tao He,Shanluo Zhou,Yi Zhang,Jixiang Guo,Wei Tang
出处
期刊:American Journal of Orthodontics and Dentofacial Orthopedics [Elsevier]
卷期号:161 (3): e250-e259 被引量:15
标识
DOI:10.1016/j.ajodo.2021.09.012
摘要

Cephalometry plays an important role in the diagnosis and treatment of orthodontics and orthognathic surgery. This study intends to develop an automatic landmark location system to make cephalometry more convenient.In this study, 512 lateral cephalograms were collected, and 37 landmarks were included. The coordinates of all landmarks in the 512 films were obtained to establish a labeled dataset: 312 were used as a training set, 100 as a validation set, and 100 as a testing set. An automatic landmark location system based on the convolutional neural network was developed. This system consisted of a global detection module and a locally modified module. The lateral cephalogram was first fed into the global module to obtain an initial estimate of the landmark's position, which was then adjusted with the locally modified module to improve accuracy. Mean radial error (MRE) and success detection rate (SDR) within the range of 1-4 mm were used to evaluate the method.The MRE of our validation set was 1.127 ± 1.028 mm, and SDR of 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 mm were respectively 45.95%, 89.19%, 97.30%, 97.30%, and 97.30%. The MRE of our testing set was 1.038 ± 0.893 mm, and SDR of 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 mm were respectively 54.05%, 91.89%, 97.30%, 100%, 100%, and 100%.In this study, we proposed a new automatic landmark location system on the basis of the convolutional neural network. The system could detect 37 landmarks with high accuracy. All landmarks are commonly used in clinical practice and could meet the requirements of different cephalometric analysis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
qrwyqjbsd应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
大方剑愁发布了新的文献求助10
20秒前
27秒前
us_1999完成签到,获得积分10
33秒前
糟糕的铁锤应助Antyonyzs采纳,获得10
1分钟前
若雨凌风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
qrwyqjbsd应助科研通管家采纳,获得10
2分钟前
Akim应助科研废人采纳,获得10
2分钟前
NexerLc完成签到,获得积分10
2分钟前
3分钟前
Omni完成签到,获得积分10
3分钟前
qrwyqjbsd应助科研通管家采纳,获得10
4分钟前
烟花应助nenoaowu采纳,获得10
4分钟前
4分钟前
开朗灵寒发布了新的文献求助30
4分钟前
开朗灵寒完成签到,获得积分20
4分钟前
陈俊雷完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
阿泽完成签到,获得积分10
5分钟前
hanyy完成签到,获得积分10
5分钟前
有人应助Benhnhk21采纳,获得10
5分钟前
5分钟前
5分钟前
英俊的铭应助yoyo采纳,获得10
5分钟前
6分钟前
MchemG完成签到,获得积分0
6分钟前
6分钟前
yoyo发布了新的文献求助10
6分钟前
科研通AI2S应助pin采纳,获得10
6分钟前
yoyo完成签到,获得积分10
6分钟前
6分钟前
7分钟前
hc发布了新的文献求助10
7分钟前
小二郎应助hc采纳,获得10
7分钟前
lll发布了新的文献求助30
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1508990
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896