High Conductance Margin for Efficient Neuromorphic Computing Enabled by Stacking Nonvolatile van der Waals Transistors

神经形态工程学 材料科学 异质结 晶体管 光电子学 堆积 人工神经网络 计算机科学 拓扑(电路) 电导 纳米技术 物理 电压 电气工程 人工智能 凝聚态物理 量子力学 工程类 核磁共振
作者
Liping Xu,Hao Xiong,Zhichao Fu,Menghan Deng,Shuiyuan Wang,Jinzhong Zhang,Liyan Shang,Kai Jiang,Yawei Li,Liangqing Zhu,Liang He,Zhigao Hu,Junhao Chu
出处
期刊:Physical review applied [American Physical Society]
卷期号:16 (4) 被引量:13
标识
DOI:10.1103/physrevapplied.16.044049
摘要

High-performance artificial synaptic devices are key building blocks for developing efficient neuromorphic computing systems. However, the nonlinear and asymmetric weight update of existing devices has restricted their practical applications. Herein, floating gate nonvolatile memory (FG NVM) devices based on two-dimensional (2D) ${\mathrm{Hf}\mathrm{S}}_{2}$/$h$-BN/FG-graphene heterostructures have been designed and investigated as multifunctional NVM and artificial optoelectronic synapses. Benefiting from the FG architecture, the ${\mathrm{Hf}\mathrm{S}}_{2}$-based NVM device exhibits competitive performances, such as a high on:off ratio ($>{10}^{5}$), large memory window (approximately 100 V), excellent charge retention ability ($>{10}^{4}\phantom{\rule{0.2em}{0ex}}\mathrm{s}$), and robust durability ($>{10}^{3}$ cycles). Notably, the artificial optoelectronic synapses based on ${\mathrm{Hf}\mathrm{S}}_{2}$ FG NVM show an impressive large conductance margin and good linearity, owing to the ultrahigh photoresponsivity and photogain of ${\mathrm{Hf}\mathrm{S}}_{2}$. The energy consumption of per spike in our artificial synapse is as low as 0.2 pJ. Therefore, a high recognition accuracy up to 91.5% of the artificial neural network on the basis of our ${\mathrm{Hf}\mathrm{S}}_{2}$-based optoelectronic synapse at the system level has been achieved, which is superior to other reported 2D artificial optoelectronic synapses. This work paves the way forward for all 2D material-based memory for developing efficient optogenetics-inspired neuromorphic computing in brain-inspired intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助gllll采纳,获得30
1秒前
NWNUJI完成签到,获得积分10
2秒前
小马甲应助QQ采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
落寞的煎蛋应助swordlee采纳,获得30
3秒前
喜悦的冷松完成签到,获得积分10
3秒前
euphoria发布了新的文献求助10
3秒前
3秒前
4秒前
简单幻天完成签到,获得积分20
4秒前
充电宝应助1aa采纳,获得10
5秒前
5秒前
张达发布了新的文献求助10
5秒前
6秒前
陈龙发布了新的文献求助10
6秒前
QDU应助科研通管家采纳,获得20
6秒前
小秋发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小天应助科研通管家采纳,获得10
6秒前
高高应助科研通管家采纳,获得10
6秒前
脑洞疼应助xi采纳,获得10
6秒前
小天应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
小天应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
preciouos发布了新的文献求助10
7秒前
丘比特应助axiao采纳,获得10
7秒前
科研通AI5应助木子铁采纳,获得10
8秒前
七七爱学习完成签到,获得积分10
8秒前
8秒前
材料生发布了新的文献求助10
9秒前
9秒前
蓝桉完成签到,获得积分20
11秒前
元气少女岳云鹏完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543997
求助须知:如何正确求助?哪些是违规求助? 3121198
关于积分的说明 9346129
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550110
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713174