Reinforcement Learning Approaches to Optimal Market Making

强化学习 马尔可夫决策过程 计算机科学 动态决策 运筹学 利润(经济学) 市场流动性 马尔可夫过程 人工智能 经济 微观经济学 工程类 数学 财务 统计
作者
Bruno Gasperov,Stjepan Begušić,Petra Posedel Šimović,Zvonko Kostanjčar
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (21): 2689-2689 被引量:5
标识
DOI:10.3390/math9212689
摘要

Market making is the process whereby a market participant, called a market maker, simultaneously and repeatedly posts limit orders on both sides of the limit order book of a security in order to both provide liquidity and generate profit. Optimal market making entails dynamic adjustment of bid and ask prices in response to the market maker’s current inventory level and market conditions with the goal of maximizing a risk-adjusted return measure. This problem is naturally framed as a Markov decision process, a discrete-time stochastic (inventory) control process. Reinforcement learning, a class of techniques based on learning from observations and used for solving Markov decision processes, lends itself particularly well to it. Recent years have seen a very strong uptick in the popularity of such techniques in the field, fueled in part by a series of successes of deep reinforcement learning in other domains. The primary goal of this paper is to provide a comprehensive and up-to-date overview of the current state-of-the-art applications of (deep) reinforcement learning focused on optimal market making. The analysis indicated that reinforcement learning techniques provide superior performance in terms of the risk-adjusted return over more standard market making strategies, typically derived from analytical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨新如完成签到,获得积分10
1秒前
Regina发布了新的文献求助10
1秒前
2秒前
英俊的铭应助hjg采纳,获得10
2秒前
云舒发布了新的文献求助10
2秒前
善学以致用应助故意的驳采纳,获得10
2秒前
方方完成签到,获得积分10
4秒前
肯德鸭完成签到,获得积分10
4秒前
4秒前
汴汴完成签到,获得积分10
4秒前
5秒前
Pyrene完成签到,获得积分10
6秒前
8秒前
北珏完成签到,获得积分10
8秒前
9秒前
可靠之玉发布了新的文献求助10
9秒前
华仔应助刘一采纳,获得10
9秒前
10秒前
11秒前
天天快乐应助哈哈哈哈采纳,获得10
11秒前
天天快乐应助你好可爱采纳,获得10
11秒前
烟花应助moheng采纳,获得10
12秒前
kelakola完成签到,获得积分10
12秒前
12秒前
srq发布了新的文献求助10
12秒前
坚定龙猫完成签到,获得积分10
12秒前
陈娟发布了新的文献求助10
13秒前
15秒前
maomao完成签到,获得积分10
16秒前
科研通AI2S应助拉长的博超采纳,获得10
16秒前
默默沛槐发布了新的文献求助10
16秒前
无情白羊发布了新的文献求助10
16秒前
生动的初柳完成签到 ,获得积分10
17秒前
19秒前
5477完成签到,获得积分10
19秒前
黄院士完成签到,获得积分10
19秒前
哈哈哈哈完成签到,获得积分10
20秒前
LJ完成签到,获得积分10
20秒前
酷波er应助leon采纳,获得10
21秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731