纳米颗粒
化学
傅里叶变换红外光谱
荧光光谱法
猝灭(荧光)
乳状液
荧光
动态光散射
化学工程
分析化学(期刊)
有机化学
材料科学
纳米技术
量子力学
物理
工程类
作者
Libin Sun,Hong Wang,Xiang Li,Sheng Lan,Junguo Wang,Dianyu Yu
标识
DOI:10.1016/j.ultsonch.2021.105810
摘要
In this work casein (CN) was used as a carrier system for the hydrophobic agent α-tocopherol (α-TOC), and an amphiphilic self-assembling micellar nanostructure was formed with ultrasound treatment. The interaction mechanism was detected with UV-Vis spectroscopy, fluorescence spectroscopy, proton spectra, and Fourier transform infrared spectroscopy (FTIR). The stability of the nanoparticles was investigated by using typical processing and storage conditions (thermal, photo, 20 ± 2 °C and 4 ± 2 °C). Oil-in-water emulsions containing the self-assembled nanoparticles and grape seed oil were prepared, and the effect of emulsion oxidation stability was studied using the accelerated Rancimat method. The results indicated that the UV-Vis spectra of α-TOC/CN nanoparticles complexes were different for ultrasonic treatments performed with different combinations of power (100, 200, 300 W) and time (5, 10, and 15 min). The results of UV-Vis fluorescence spectrum data indicated that the secondary structure of casein changed in the presence of α-TOC. The nanoparticles exhibited the chemical shifts of conjugated double bonds. Interactions between α-TOC and casein at different molar concentrations resulted in a quenching of the intrinsic fluorescence at 280 nm and 295 nm. Moreover, by performing FTIR deconvolution analysis and multicomponent peak modeling, the relative quantitative amounts of α-helix and β-sheet protein secondary structures were determined. The self-assembled nanoparticles can improve the stability of α-TOC by protecting them against degradation caused by light and oxygen. The antioxidant activity of the nanoparticles was stronger than those of the two free samples. Lipid hydroperoxides remained at a low level throughout the course of the study in emulsions containing 200 mg α-TOC/kg oil with the nanoparticles. The presence of 100 and 200 mg α-TOC/kg oil led to a 78.54 and 63.54 μmol/L inhibition of TBARS formation with the nanoparticles, respectively, vs the free samples containing control after 180 mins.
科研通智能强力驱动
Strongly Powered by AbleSci AI