Algorithmic Scheme for Concurrent Detection and Classification of Printed Circuit Board Defects

印刷电路板 方案(数学) 计算机科学 过程(计算) 人工智能 分类方案 模糊逻辑 自动X射线检查 分割 计算机视觉 模式识别(心理学) 图像处理 图像(数学) 机器学习 数学 操作系统 数学分析
作者
Mohd Anul Haq,Abdul Khadar Jilani,P. Prabu
出处
期刊:Computers, materials & continua 卷期号:71 (1): 355-367 被引量:14
标识
DOI:10.32604/cmc.2022.017698
摘要

An ideal printed circuit board (PCB) defect inspection system can detect defects and classify PCB defect types. Existing defect inspection technologies can identify defects but fail to classify all PCB defect types. This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types. In the proposed algorithmic scheme, fuzzy c-means clustering is used for image segmentation via image subtraction prior to defect detection. Arithmetic and logic operations, the circle hough transform (CHT), morphological reconstruction (MR), and connected component labeling (CCL) are used in defect classification. The algorithmic scheme achieves 100% defect detection and 99.05% defect classification accuracies. The novelty of this research lies in the concurrent use of CHT, MR, and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location, area, and nature of defects. This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process. Moreover, the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process, improve the PCB quality, and lower the production cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待雅寒完成签到,获得积分10
1秒前
Calactic完成签到 ,获得积分10
1秒前
今后应助唠叨的又菡采纳,获得10
1秒前
orixero应助Yvonne采纳,获得10
2秒前
ya完成签到,获得积分10
2秒前
2秒前
梅竹发布了新的文献求助10
2秒前
000发布了新的文献求助10
3秒前
李爱国应助西蓝花战士采纳,获得10
3秒前
527完成签到,获得积分10
3秒前
liang发布了新的文献求助30
3秒前
海光发布了新的文献求助30
4秒前
暖若安阳完成签到,获得积分10
4秒前
求助人完成签到 ,获得积分10
4秒前
4秒前
forg发布了新的文献求助10
4秒前
西瓜发布了新的文献求助10
4秒前
veinard完成签到,获得积分20
4秒前
迷路访旋完成签到,获得积分20
5秒前
亚丽发布了新的文献求助10
5秒前
漂亮大树完成签到 ,获得积分10
5秒前
5秒前
泡泡糖完成签到 ,获得积分10
6秒前
6秒前
吸墨发布了新的文献求助10
6秒前
7秒前
mhq发布了新的文献求助10
7秒前
7秒前
科研通AI6应助chinchilla采纳,获得10
7秒前
元气满满nn完成签到,获得积分10
7秒前
8秒前
9秒前
染墨完成签到,获得积分10
9秒前
KevinHill0924发布了新的文献求助10
9秒前
搜集达人应助Freedom采纳,获得10
9秒前
10秒前
贪玩岱周发布了新的文献求助10
11秒前
11秒前
领导范儿应助闪闪航空采纳,获得10
12秒前
ChoHing完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970