印刷电路板
方案(数学)
计算机科学
过程(计算)
人工智能
分类方案
模糊逻辑
自动X射线检查
分割
计算机视觉
模式识别(心理学)
图像处理
图像(数学)
机器学习
数学
数学分析
操作系统
作者
Mohd Anul Haq,Abdul Khadar Jilani,P. Prabu
标识
DOI:10.32604/cmc.2022.017698
摘要
An ideal printed circuit board (PCB) defect inspection system can detect defects and classify PCB defect types. Existing defect inspection technologies can identify defects but fail to classify all PCB defect types. This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types. In the proposed algorithmic scheme, fuzzy c-means clustering is used for image segmentation via image subtraction prior to defect detection. Arithmetic and logic operations, the circle hough transform (CHT), morphological reconstruction (MR), and connected component labeling (CCL) are used in defect classification. The algorithmic scheme achieves 100% defect detection and 99.05% defect classification accuracies. The novelty of this research lies in the concurrent use of CHT, MR, and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location, area, and nature of defects. This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process. Moreover, the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process, improve the PCB quality, and lower the production cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI