Data-Driven Bandpass Filter Design for Estimating Symbol Rate of Sporadic Signal at Low SNR

符号速率 解调 算法 计算机科学 带通滤波器 数学 正交调幅 信噪比(成像) 估计员 误码率 控制理论(社会学) 电信 电子工程 统计 频道(广播) 人工智能 解码方法 工程类 控制(管理)
作者
Can Pei,Suzhi Bi,Zhi Quan
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 2680-2694 被引量:1
标识
DOI:10.1109/twc.2021.3114678
摘要

Symbol rate is one of the most important parameters in signal demodulation process. In real-time signal processing, traditional symbol rate estimation algorithms for the Multiple Phase Shift Keying (M-PSK) and the Multiple Quadrature Amplitude Modulation (M-QAM) are based on the Fourier transform of signal’s complex envelope. At the low signal-to-noise ratio (SNR), the accuracy of symbol rate estimation can be improved by increasing the number of symbols as much as possible. However, this improvement is infeasible in many applications such as the energy-limited Internet of Things devices and sporadic noncooperative transmissions. In this paper, we propose a data-driven bandpass filter (BPF) design scheme for accurate estimation of symbol rate under low SNR with only a small number of symbols available. The proposed scheme considerably improves the estimation performance by optimizing the BPF design using the equivalent dynamic linearization model with time-varying pseudo-partial derivatives. Specifically, the proposed scheme iteratively optimizes the upper and lower cut-off frequencies of the BPF based on the measured complex envelope spectrum until achieving the optimal BPF. Therefore, the peaks of the complex envelope spectrum are extracted as the estimate of the symbol rate by applying the optimal BPF. Experimental results indicate the promise of the proposed scheme as an efficient symbol rate estimator for sporadic signal at low SNR and with a small number of symbols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
龙俊利发布了新的文献求助10
2秒前
3秒前
理综完成签到,获得积分10
4秒前
5秒前
完美世界应助Stanley采纳,获得10
5秒前
5秒前
顺利的梦菲完成签到 ,获得积分10
6秒前
bc完成签到,获得积分10
6秒前
清爽柠檬应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得50
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
佳佳应助科研通管家采纳,获得10
8秒前
悄悄发布了新的文献求助10
8秒前
李爱国应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
junyang发布了新的文献求助10
10秒前
10秒前
所所应助Danaus采纳,获得10
10秒前
Lin发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
Cookie完成签到,获得积分20
15秒前
岁月静好完成签到,获得积分20
16秒前
情怀应助Norzing采纳,获得10
16秒前
ZGZ123发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
小马甲应助顺利的夜梦采纳,获得10
18秒前
记忆等于零完成签到,获得积分10
18秒前
科研通AI2S应助llll采纳,获得30
18秒前
娟子完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371