Data-Driven Bandpass Filter Design for Estimating Symbol Rate of Sporadic Signal at Low SNR

符号速率 解调 算法 计算机科学 带通滤波器 数学 正交调幅 信噪比(成像) 估计员 误码率 控制理论(社会学) 电信 电子工程 统计 频道(广播) 人工智能 解码方法 工程类 控制(管理)
作者
Can Pei,Suzhi Bi,Zhi Quan
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 2680-2694 被引量:1
标识
DOI:10.1109/twc.2021.3114678
摘要

Symbol rate is one of the most important parameters in signal demodulation process. In real-time signal processing, traditional symbol rate estimation algorithms for the Multiple Phase Shift Keying (M-PSK) and the Multiple Quadrature Amplitude Modulation (M-QAM) are based on the Fourier transform of signal’s complex envelope. At the low signal-to-noise ratio (SNR), the accuracy of symbol rate estimation can be improved by increasing the number of symbols as much as possible. However, this improvement is infeasible in many applications such as the energy-limited Internet of Things devices and sporadic noncooperative transmissions. In this paper, we propose a data-driven bandpass filter (BPF) design scheme for accurate estimation of symbol rate under low SNR with only a small number of symbols available. The proposed scheme considerably improves the estimation performance by optimizing the BPF design using the equivalent dynamic linearization model with time-varying pseudo-partial derivatives. Specifically, the proposed scheme iteratively optimizes the upper and lower cut-off frequencies of the BPF based on the measured complex envelope spectrum until achieving the optimal BPF. Therefore, the peaks of the complex envelope spectrum are extracted as the estimate of the symbol rate by applying the optimal BPF. Experimental results indicate the promise of the proposed scheme as an efficient symbol rate estimator for sporadic signal at low SNR and with a small number of symbols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特跳跳糖完成签到 ,获得积分10
1秒前
1秒前
hyl-tcm完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
LL发布了新的文献求助10
4秒前
xavier发布了新的文献求助10
4秒前
4秒前
孙意冉发布了新的文献求助10
5秒前
6秒前
hd发布了新的文献求助10
7秒前
8秒前
kakainho完成签到,获得积分10
8秒前
8秒前
坚定寒松完成签到 ,获得积分10
9秒前
9秒前
沈迎南发布了新的文献求助10
9秒前
甜甜寄凡发布了新的文献求助10
10秒前
Dr.feng完成签到,获得积分10
11秒前
jihenyouai0213完成签到,获得积分10
11秒前
可靠橘子发布了新的文献求助10
12秒前
等待的mango应助群众采纳,获得10
13秒前
lijunlhc完成签到,获得积分10
13秒前
冷酷的冰夏完成签到,获得积分10
13秒前
xxfsx应助孤独的万言采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
凯凯发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
浮游应助浮浮世世采纳,获得20
18秒前
18秒前
可靠橘子完成签到,获得积分10
18秒前
18秒前
20秒前
英俊的铭应助落花生采纳,获得10
21秒前
深情安青应助傲娇林采纳,获得10
21秒前
Author发布了新的文献求助10
23秒前
欢呼一斩发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474