Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds

聚酰胺 纳滤 纳米复合材料 化学工程 单体 材料科学 界面聚合 图层(电子) 化学 纳米技术 高分子化学 聚合物 有机化学 生物化学 工程类
作者
Ruobin Dai,Hongyi Han,Zhu YuTing,Xi Wang,Zhiwei Wang
出处
期刊:Frontiers of Environmental Science & Engineering [Springer Nature]
卷期号:16 (4) 被引量:40
标识
DOI:10.1007/s11783-021-1474-7
摘要

Metal organic framework (MOF) incorporated thin-film nanocomposite (TFN) membranes have the potential to enhance the removal of endocrine disrupting compounds (EDCs). In MOF-TFN membranes, water transport nanochannels include (i) pores of polyamide layer, (ii) pores in MOFs and (iii) channels around MOFs (polyamide-MOF interface). However, information on how to tune the nanochannels to enhance EDCs rejection is scarce, impeding the refinement of TFN membranes toward efficient removal of EDCs. In this study, by changing the polyamide properties, the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense. Interestingly, the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane. At low monomer concentration (i.e., loose polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) in the polyamide layer could not dominate the membrane separation performance, and hence the extent of improvement in EDCs rejection was relatively low. In contrast, at high monomer concentration (i.e., dense polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) were responsible for the selective removal of hydrophobic EDCs, demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off. Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助称心嫣娆采纳,获得10
1秒前
yhxwqkk完成签到,获得积分10
1秒前
1秒前
Owen应助中科院王博采纳,获得10
1秒前
只争朝夕应助queer采纳,获得10
1秒前
高兴的金鑫完成签到 ,获得积分10
2秒前
玛卡巴卡完成签到 ,获得积分20
2秒前
零一完成签到,获得积分10
2秒前
3秒前
幸福的馒头完成签到,获得积分10
3秒前
4秒前
成就念芹完成签到,获得积分10
4秒前
yingziiii完成签到 ,获得积分10
5秒前
假装有昵称完成签到 ,获得积分10
5秒前
鲤鱼夜南发布了新的文献求助10
6秒前
科研通AI6应助fan采纳,获得10
6秒前
Akim应助霸气涛采纳,获得10
7秒前
松果完成签到,获得积分10
8秒前
何同学发布了新的文献求助10
8秒前
点点完成签到,获得积分10
9秒前
霸气远锋发布了新的文献求助10
9秒前
英姑应助迷路的豌豆采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
香蕉觅云应助大雪参采纳,获得10
10秒前
kento应助yeguo采纳,获得50
11秒前
香蕉从寒完成签到,获得积分10
11秒前
萌only发布了新的文献求助10
12秒前
老仙女给老仙女的求助进行了留言
12秒前
玛卡巴卡发布了新的文献求助30
12秒前
传奇3应助羊与布克采纳,获得10
16秒前
niNe3YUE应助queer采纳,获得10
16秒前
16秒前
17秒前
17秒前
陈陈完成签到 ,获得积分10
17秒前
Orange应助morena采纳,获得10
18秒前
18秒前
18秒前
无极微光应助Wguan采纳,获得20
19秒前
飘逸书易完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577828
求助须知:如何正确求助?哪些是违规求助? 4662923
关于积分的说明 14743771
捐赠科研通 4603565
什么是DOI,文献DOI怎么找? 2526517
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465605