Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds

聚酰胺 纳滤 纳米复合材料 化学工程 单体 材料科学 界面聚合 图层(电子) 化学 纳米技术 高分子化学 聚合物 有机化学 生物化学 工程类
作者
Ruobin Dai,Hongyi Han,Zhu YuTing,Xi Wang,Zhiwei Wang
出处
期刊:Frontiers of Environmental Science & Engineering [Springer Nature]
卷期号:16 (4) 被引量:35
标识
DOI:10.1007/s11783-021-1474-7
摘要

Metal organic framework (MOF) incorporated thin-film nanocomposite (TFN) membranes have the potential to enhance the removal of endocrine disrupting compounds (EDCs). In MOF-TFN membranes, water transport nanochannels include (i) pores of polyamide layer, (ii) pores in MOFs and (iii) channels around MOFs (polyamide-MOF interface). However, information on how to tune the nanochannels to enhance EDCs rejection is scarce, impeding the refinement of TFN membranes toward efficient removal of EDCs. In this study, by changing the polyamide properties, the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense. Interestingly, the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane. At low monomer concentration (i.e., loose polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) in the polyamide layer could not dominate the membrane separation performance, and hence the extent of improvement in EDCs rejection was relatively low. In contrast, at high monomer concentration (i.e., dense polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) were responsible for the selective removal of hydrophobic EDCs, demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off. Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
刚刚
MADKAI发布了新的文献求助10
刚刚
xunxunmimi完成签到,获得积分10
1秒前
1秒前
1秒前
刘星星发布了新的文献求助10
2秒前
CodeCraft应助科研菜鸟采纳,获得20
2秒前
zyyyyyyyyyyy完成签到,获得积分10
3秒前
4秒前
研友_8yN60L发布了新的文献求助30
4秒前
打打应助柳七采纳,获得10
5秒前
零零二完成签到 ,获得积分10
5秒前
韭菜盒子发布了新的文献求助10
6秒前
Maestro_S完成签到,获得积分0
6秒前
volzzz发布了新的文献求助10
6秒前
wgglegg完成签到,获得积分10
6秒前
科研通AI5应助小胖鱼采纳,获得10
6秒前
酷波er应助黄超采纳,获得10
6秒前
6秒前
大智若愚啊完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
彬彬发布了新的文献求助10
7秒前
健壮丹妗完成签到 ,获得积分10
7秒前
Orange应助铸一字错采纳,获得10
7秒前
7秒前
Accept应助阿烨采纳,获得10
9秒前
欧阳小枫发布了新的文献求助10
10秒前
11秒前
Heidi完成签到 ,获得积分10
11秒前
见雨鱼发布了新的文献求助10
11秒前
学术扛把子完成签到 ,获得积分10
11秒前
Lucas应助陈某某采纳,获得10
11秒前
尊敬的钥匙完成签到,获得积分10
12秒前
13秒前
13秒前
赘婿应助无情的白桃采纳,获得10
13秒前
习习应助zhu96114748采纳,获得10
14秒前
英姑应助韭菜盒子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740