Dynamic Fall Risk Assessment Framework for Construction Workers Based on Dynamic Bayesian Network and Computer Vision

动态贝叶斯网络 风险评估 动态评估 贝叶斯网络 风险分析(工程) 计算机科学 工作(物理) 计算机安全 工程类 人工智能 遗传学 医学 机械工程 生物
作者
Yanmei Piao,Wenpei Xu,Ting-Kwei Wang,Jieh Haur Chen
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (12) 被引量:11
标识
DOI:10.1061/(asce)co.1943-7862.0002200
摘要

Due to the dynamics of changing construction-related entities at construction sites and the hazardous work environment, safety accidents occur frequently, especially falls from heights. The current practice of fall risk assessment for construction workers, which mainly relies on manual observation by safety experts, is a static risk assessment that is time-consuming and laborious. A proactive, dynamic risk assessment framework is urgently needed to address this issue. In this work, computer vision has been combined with dynamic Bayesian network (DBN) to propose a dynamic risk assessment framework. The aim of the proposed framework is to improve the efficiency of risk assessment and reduce fall risk by automatically detecting onsite risk factor information. The proposed framework was tested using the activity of climbing ladders as a case study. The results show that the proposed dynamic fall risk assessment framework is feasible. It can be used to dynamically assess the fall risk of workers by automatically detecting the states of fall risk factors and capturing dynamic changes among the risk factors. The framework also includes a method of sending targeted early warnings to workers while assessing their risk levels, reducing the possibility of falls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggngggg关注了科研通微信公众号
刚刚
mamei完成签到,获得积分10
刚刚
望北完成签到 ,获得积分10
刚刚
1秒前
yzhwzh发布了新的文献求助10
1秒前
小太阳发布了新的文献求助10
1秒前
bluekids完成签到,获得积分10
2秒前
咖可乐完成签到,获得积分10
4秒前
mamei发布了新的文献求助10
5秒前
方羽应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
小慕斯应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得20
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Murray应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
英姑应助时倾采纳,获得10
7秒前
7秒前
Lml完成签到,获得积分10
8秒前
不冰淇淋完成签到,获得积分10
8秒前
沙沙发布了新的文献求助10
8秒前
8秒前
桐桐应助英勇的书包采纳,获得10
9秒前
10秒前
10秒前
李思超完成签到,获得积分10
10秒前
香蕉觅云应助yzhwzh采纳,获得10
13秒前
13秒前
14秒前
成就灵波完成签到,获得积分10
15秒前
畅怀发布了新的文献求助10
15秒前
ggngggg发布了新的文献求助10
16秒前
17秒前
83366完成签到,获得积分10
17秒前
明亮寻绿发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351760
求助须知:如何正确求助?哪些是违规求助? 2977185
关于积分的说明 8678105
捐赠科研通 2658191
什么是DOI,文献DOI怎么找? 1455578
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664535